2011a(13)/2006b(10)/2000a(5): Describe the determinants of work of breathing in an adult human at rest.

(2006b(10)/2000a(5): Explain how to minimize work)
In the adult human at rest, breathing involves inspiration and expiration
Work = pressure x volume (Joules)

Inspiration
Inspiration is an active process
- **Inspiratory mm: Diaphragm, external intercostals**
 - O₂ requirement 3ml/min
 - Contraction of diaphragm → vertical downward movement → ↑vertical volume of thorax
 - Contraction of external intercostals → bucket handle movement of ribs → ↑AP and lat vol of thorax
- ↑ in all dimensions of thorax ↓intra-pleural pressure, ↓alveolar pressure of mouth → movement of air into lungs
Air movement requires the overcoming of forces of friction, airways resistance and elastic forces of the lung
- **Friction / Airways Resistance**: 50% of inspiratory work (blue area)
- **Elastic Forces of Lung**: 50% of work
 - Inspiration: stretching of elastic fibres / overcoming surface tension (minimised with surfactant)
 - Energy stored as potential energy (green area)
 - Minimal energy required to overcome elastic force as resting lung (at FRC) sits on steep part of compliance curve

Expiration
In an adult at rest → passive process
- Needs to overcome friction / airways resistance
- Potential energy (green area) stored in stretched elastic tissue is released when fibres return to resting length
- Energy released to overcome friction (red area) covered by potential energy → rest dissipated as heat

Minimise work of breathing
- Breathing from FRC
 - Keeps lung on steep part of compliance curve
- RR controlled
 - ↑RR → ↑flow → ↑friction
 - ↓RR Advantageous in obstructive lung disease → large slow breaths minimize friction work
 - ↑RR If ↓compliance of lung (restrictive lung disease) → small, rapid breaths advantageous (minimize elastic work)
- Minimise resistance
 - Poiseuille-Hagan equation
 - \[R = \frac{8 \eta l}{\pi r^4} \]
 - \(R \) = resistance, \(\eta \) = viscosity of gas, \(l \) = length of tube, \(r \) = radius

By Amanda Diaz
- Small ↑ airway radius → large ↓ resistance
 - Reynolds Number
 - \(\frac{\rho D v}{\eta} \) \(\rho = \) density of gas, \(D = \) diameter of tube, \(v = \) velocity, \(\eta = \) viscosity of gas
 - Flow rate controlled (\(v \))
 - Reynolds Number > 2000 ↑ turbulent flow → ↑ work of breathing

Total WOB → to move lung and chest
- Difficulty to measure
- Estimates previously obtained by ventilating paralysed Pts in an ‘iron lung’
- Can be calculated as **O\(_2\) cost of breathing**

 Efficiency % = \(\frac{\text{useful work}}{\text{O}_2 \text{ cost (total energy expended)}} \) x 100

 = 5 – 10%

- ↑ with ↑ RR (30%)
- COAD → \(\text{O}_2 \) cost may limit exercise ability