Physicochemical				
Structure	Purine nucleoside			
	Purine base			
	D-ribose			
Presentation	IV injection 3mg/ml in NS			
	Pharmacodynamics			
Use	Differentiate b/n SVT and VT			
	Treatment of SVT (90% efficacy)			
МОА	↓SA & AV node activity			
	Activate adenosine A_1 receptors $\rightarrow \uparrow K^+$ channel			
	opening \rightarrow hyperpolarisation			
	Antagonises cAMP-mediated catechol stimulation			
	of vent mm (G _i -PCR stimulation)			
	Negative chronotrope / negative dromotrope			
Dose	Rapid IV bolus			
	Initial dose $3mg \rightarrow$ then $6mg \rightarrow$ then $12mg$ at 1-			
	2min intervals			
	Paeds 0.0375-0.25mg/kg			
Heart	\downarrow SA/ \downarrow AV node activity \rightarrow terminate SVT;			
	unmasks AF/flutter			
	Dose-dependent ↑myocardial BF 2° coronary aa			
	dilatation (A ₂ receptor stim ⁿ)			
MAP	Nil effect as bolus (initial ↑MAP then ↓MAP)			
	High dose infusion $\rightarrow \downarrow TPR \rightarrow \downarrow MAP$			
Respiratory	↓PVR in Pts with pulmonary HT			
	\uparrow MV (\uparrow TV, \uparrow RR) 2° A ₂ stimulation carotid body			
	Bronchospasm \rightarrow relative contraindication with			
	COAD/asthma			
Other	$\uparrow CBF \rightarrow$ headache, Impending doom			
	Hyperalgesia, chest discomfort			
	Facial flushing			
	N&V			
	Stimulates glycolysis, inhibits lipolysis			
	Profound bradycardia req pacing			
	↑risk of VF 2° high grade AV blockade →			
	contraindication in Pts with 2°/3° heart block			
	Pharmacokinetics			
Absorption/Distribution	IV only / Vd not measurable 2° rapid metabolism			
Metabolism	Absorbed into RBC $\rightarrow t_{\frac{1}{2}\beta}$ 10s			
Phosphorylated to AMP / deaminated to inor				
Lleo in anaosthosia:				

1996a(15): Describe briefly the pharmacology of adenosine and its potential use in anaesthesia

Use in anaesthesia:

- Potential use to \downarrow MAP pre-operatively (as low dose infusion)
- Intr-operative use ↓MAC of isoflurane
- Upost-op analgesia requirements

1999a(16): Describe the effects of α_2 adrenoceptor agonists relevant to anaesthesia

General: α_2 adrenoceptors are present on target tissues

- Presynaptically on sympathetic nerve fibres (peripheral)
- CNS / spinal cord (post-synaptic)
- Platelets

 α_2 adrenoceptors are GPCR

- **G**_i-coupled adenylyl cyclase inhibition
 - Activation of receptor $\rightarrow \downarrow cAMP$

Commonly used drugs:

- Clonidine
- Dexmetatomidine

Actions mediated by receptor activation:

Effect	Mechanism of Action	
↓MAP	Initial $\uparrow MAP \rightarrow 2^{\circ} \alpha_1$ stimulation (vasoconstrict) especially	
	with rapid bolus	
	Sustained \downarrow MAP 2° central α_2 activation (\downarrow NA release)	
	Rebound ↑MAP may occur on removal of drug (2°	
	upregulation NA)	
HR/SV/Contractility	0	
Analgesia	\downarrow NA release in brain / spinal cord \rightarrow analgesia	
	Dorsal horn inhibition (Aδ- C-fibre mediated afferents)	
	↓spontaneous sympathetic outflow	
	Useful as combination in neuraxial/regional blockade as	
	↓opioid requirement (Dose: 1-2mcg/kg)	
	↓MAC / ↑LA duration	
	Useful adjunct in chronic pain / opioid withdrawal	
Sedation/Anxiolytic	Sedation 2° ↓NA release within brain	
Anti-emetic	↓sensitivity of CTZ	
	Anti-sialogogue / ↓intr-gastric pressure (↓LOS tone)	
ICP/IOP	\downarrow 2° \downarrow MAP (\downarrow CBF), also \downarrow aqueous, \downarrow CSF production	
Post-op shivering	$\downarrow 2^{\circ} \alpha_2$ stimulation in spinal cord	
	Can lead to ↓T°C	

1999b(2): Briefly describe the mechanisms and treatment of toxicity of SNP General: Sodium nitroprusside (SNP) is an **inorganic complex** which functions as a **prodrug**

- Acts as a **peripheral vasodilator** indirectly by ↑**NO** production **Mechanism of Action**

- SNP → RBC → reacts with oxyHb to form metHb, 5 cyanide molecules (CN⁻) and NO
- NO diffuses out to endothelium → activates guanylyl cyclase system → ↑cGMP
 - cGMP → prevents Ca^{2+} entry into smooth muscle cell; also $\uparrow Ca$ uptake into SR
 - Effect: Vasodilatation
- MetHb binds 1 CN^{-} molecule \rightarrow forming non-toxic complex
- 4 CN⁻ diffuse out of RBC
 - Metabolised by **rhodanase** enzyme in **liver** and **kidneys** to **thiocyanate (SCN)** \rightarrow by adding sulphur moiety
- SCN: t_{½β} 3-4 days
 - o 100 x less toxic than CN
 - Excreted in urine $\rightarrow \uparrow$ in presence of renal failure

Toxicity of SNP

Related to the products of metabolism

NO

- Causes overall ↓MAP by vasodilation
 - Arterial $\rightarrow \downarrow$ SVR
 - Venous $\rightarrow \downarrow$ preload
- SNP highly potent \rightarrow careful titration of infusion to effect
 - Requires invasive BP monitoring
- Pulmonary vasodilation
 - Removal of hypoxic pulmonary vasoconstriction $\rightarrow \uparrow$ shunt
 - o Treatment: supplemental O₂
 - Cerebral vasodilation
 - $\circ \quad \uparrow \text{ICP but } \downarrow \text{CPP}$
 - o May cause headache
- Platelets
 - ↓platelet aggregation (NO effect)

Cyanide

- May occur with infusions > 2µg/kg/min
- Occurs when sulphur donors / metHb exhausted
- CN binds inactive cytochrome oxidase \rightarrow inhibiting oxidative phosphorylation
 - o \uparrow anaerobic metabolism \rightarrow metabolic acidosis
 - \downarrow O₂ utilisation → \uparrow mixed venous O₂ content
- Suspect in Pts with HT resistant to therapy
 - o ↑HR
 - Diaphoretic, ↑MV
 - Can progress CNS Sx inc seizure, coma

Cr

- ↑risk in **hypothermic** patients
 - \downarrow rate of rhodanase conversion $CN^- \rightarrow SCN$
- Treatment:
 - o Cease infusion
 - $\circ \quad \uparrow O_2 \text{ available} \rightarrow \text{supplemental } O_2$
 - Correct acidosis \rightarrow NaHCO₃
 - \uparrow Sulfur donors \rightarrow IV Na thiosulfate (150mg/kg over 15min)
 - \uparrow CN⁻ binders → hydroxycobalbumin (Vit B_{12a}) → cyanocobalbumin (Vit B₁₂)
 - o ↑metHb \rightarrow Na nitrite 5mg/kg slow IV **if severe**

Thiocyanate

- 100 x less toxic than $CN^- \rightarrow$ toxicity rare
- Excreted renally \rightarrow in Pts with renal failure, 7-10day infusion of 2-5µg/kg/min can produce toxic levels
- Sx: non-specific
 - o N&V, tinnitus, fatigue
- Signs:
 - o ↑reflexes, confusion, psychosis, coma
 - Treatment: dialysis

MetHb

- Unlikely to accumulate to levels which are toxic, even in Pts with congenital MetHb reductase deficiency
- To develop 10% metHb \rightarrow need 10mg/kg SNP (really high dose)
- Treatment: methylene blue (1-2mg/kg) BUT not advised as metHb needed for CN⁻ clearance

Photoreduction

- Must be administered / stored protected from sunlight
- Exposure will cause rapid reaction to form HCN⁻
 - \circ Colour of solution changes from browny-red \rightarrow blue
 - Must be discarded

Property	Esmolol	Propranolol
Uses	AF, atrial flutter	HT, angina, essential tremour,
	Peri-operative HT	anxiety, thyrotoxicosis, HOCM,
	MI	Pheo prophylaxis, migraine
	Physicochemical	
Presentation	Solution for injection (10/	Tablets (10, 40, 80, 160mg),
	250mcg/ml)	solution for injection (1mg/ml)
	pH 5.5 (pain on injection)	, , , ,
Isomerism	Nil	Racemic mixture
		S-isomer \rightarrow most effects
		$R- \rightarrow \text{prevent } T_4 \rightarrow T_3$
Routes/doses	IV only	PO: 30-320mg/day (bd→tds)
	,	IV: 1-10mg
	Pharmacodynamics	¥
Mechanism of Action	Selective β ₁ block	Non-selective β_1/β_2 block
	°sympathomimetic activity	°Sympathomimetic activity
	Peak effect 10min	High doses inhibits Na ⁺ ion
	Off by 20min	flux \rightarrow membrane stabiliser
CVS	Neg inotrope	Neg inotrope
	Neg chronotrope	Neg chronotrope
	Similar ↓CO to propranolol	↓CO by ~20%
		\downarrow MRO ₂
		\downarrow MAP \rightarrow poorly defined
		?central effect
Despiratory	Minimal effect	
Respiratory	Minimal effect	↓FEV ₁ 2° ↑airways resistance
		↓ventilatory response to
		↑PaCO ₂
CNS	$\downarrow CBF 2^{\circ} \downarrow MAP \rightarrow \downarrow ICP$	Cross BBB $\rightarrow \downarrow$ tremor, \downarrow IOP,
		anxiolytic
		↓ICP, ↓vasospasm
GU	Nil	↓uterine tone
Metabolic	Min	↓renin ($β_1$ block JGA)→
		↓aldosterone
		↓FFA
		↓gluconeogenesis
Side Effects	Less likely to produced HF,	HF, heart block
	Heart block	Bronchospasm
		Nightmares
		Mask Sx ↓BSL
		↓exercise tolerance Abrupt
		cessation \rightarrow angina, V
		arrhythmias, MI, sudden death
Drug interactions	↑recovery time from sux (5-	Displace fentanyl from lungs
	8min)	
	Pharmacokinetics	
Absorption	IV only	90% PO
		Bioavailability 30% 2° 1 st pass
		metabolism
Distribution	Lipid soluble (+++)	Lipid soluble (+++)
	60%protein bound	95%protein bound (AAG)
	Vd 3.5L/kg	Vd 3.5L/kg

2001a(15): Compare and contrast the pharmacology of esmolol and propranolol

	esterase Major acid metabolite has weak β-blocker activity	deamination → dealkylation → glucoronidation 4-hydroxy metabolite active ↓dose in liver failure
Elimination	Renal: <1% unchanged CL 285ml/min/kg $t_{\forall\beta}$ 10min Renal disease \rightarrow caution major acid metabolite renally excreted ($t_{\forall\beta}$ 3.5hrs)	Renal: <1% unchanged CL 1L/min t _{½β} 3hrs Nil effect renal failure

2002a(13): What are the side effects of amiodarone? What problems develop during concurrent anaesthesia?

Physicochemical:

- Amiodarone is a benzofuran derivative
 - \circ 37% iodine by wt \rightarrow resembles thyroxine

Presentation

- Tablets: 100/200mg
- Injection: 30/50mg/ml
- Pharmacodynamics:

Use

- Treatment of SVT, VT, WPW syndrome

Mechanism of Action

- Has Class I, II, III, IV activity
- Slows rate of repolarisation by blocking K⁺ channels
 - o ↑duration of action potential
 - o **†refractory period**
- Partial antagonism (non-competitive blockade) of α- and β-agonists
 - \circ \downarrow receptor numbers
 - Inhibits coupling of receptor to regulatory subunit of adenylate cyclase system

Side-Effects

Pulmonary

- Common (5-15%)
 - o Incidence 10% at 3yrs
- Pneumonitis, fibrosis, pleuritis
- Reversible if stopped at early stages
- Acute pulmonary toxicity: mimics infectious pneumonia (uncommon)
 - \uparrow risk of acute toxicity with high FiO₂ as in anaesthesia
- ↑risk of developing post-op ARDS in critically ill Pts
 - Especially if on CPB

Cardiac

- Large doses, rapid IV \rightarrow bradycardia, \downarrow MAP
 - o $2^{\circ} \alpha/\beta$ blockade \rightarrow vasodilatation
- GA may exacerbate effect
 - o Sinus arrest, complete AV block, ↓TPR, ↓MAP, ↓CO, HF
 - Can be resistant to atropine, adrenaline and norad
 - May require peri-operative pacing
- ↑QT (2° class III blockade)
 - \circ ↑risk ventricular dysrrhythmias (Torsades de Pointes) → less common than with sotolol
 - o Care in concurrent use with TCA, thiazides, phenothiazine

Thyroid

- Can precipitate hyper-/hypothyroidism \rightarrow related to iodine content
- Incidence 2-4%
 - $\circ \quad \uparrow \text{ or } \downarrow T_4 \text{ production}$
 - o Prevents peripheral conversion of $T_4 \rightarrow T_3$

- Replacement should be T₃
- Usually reversible with cessation

Liver

- Cirrhosis, hepatitis, jaundice
- Deranged LFTs common \rightarrow dose-dependent

Skin

- Slate grey appearance 2° photosensitive skin reactions.
 - Reversible on cessation

Gut

- Metallic taste

CNS

- Peripheral neuropathy; rarely myopathy
- Corneal microdeposits common \rightarrow ?clinical sig

o Reversible

Interactions

- 95% Protein bound
 - Displaces other highly protein bound drugs (warfarin, phenytoin)
- Digoxin levels and toxicity more common

2002b(7)/2001b(15): Outline the potential advantages and disadvantages of intra- (& peri-) operative beta blockade

General: β blockers are used to treat HT, pheochromocytoma, portal HT, and HF

- Mechanism of action: **Competitive** blockade of β adrenoceptor, preventing activation by endogenous adrenaline/NA
 - Some exhibit partial agonist properties (useful in HF)
- Can be **selective** for β_1 receptor or **non-specific** (β_1 and β_2 blockade)
- Most of the wanted effects occur with β₁ blockade:
 - o Negative inotropy
 - Negative chronotropy
- Unwanted effects arise from β_2 blockade
 - $\circ \quad {\downarrow} MAP \; 2^{\circ} \; {\downarrow} CO$
 - Orthostatic hypotension
- In general, **short acting** β_1 **selective blockers** are used in anaesthesia in the peri- and intra-operative period due to $\downarrow\beta_2$ related side-effects
 - MetoprololEsmolol

0 ESITUIUI		
Advantages	Disadvantages	
↓Myocardial Work	↓MAP can be refractory to treat	
↓ O₂ demand of heart mm	Unable to oppose cardiac effect of β	
2° ↓HR, ↓contractility	blockade	
↑Diastolic time	Unopposed vagal tone → eg from peritoneal	
\uparrow coronary aa perfusion time \rightarrow improved	stretch, laryngoscopy is unopposed	
LV perfusion ↑ O ₂ <i>supply</i>	results in profound ↓MAP	
↓systolic time	difficult to treat	
2° ↓HR	Bradycardia	
Anti-arrhythmic Effect	Drug Interactions	
β blockers are class II anti-arrhythmic	α_1 agonist (metaraminol) to treat \downarrow MAP \rightarrow	
Stabilises myocardium	↑↑MAP→ ↑risk MI	
Sotolol also class III anti-arrhythmic	Ca^{2+} blockers \rightarrow can precipitate HF/heart	
	block	
↓MAC	Bradycardia	
Obtunds hypertensive response to	Negative inotropy/chronotropy effect	
Intubation	Precipitate CCF \rightarrow APO	
Tourniquet	LVF in susceptible Pts	
	Mask hypoglycaemia	
	↓response to ↓BSL (catecholamines,	
	glucagon) in diabetics	
	Bronchospasm	
	especially in asthmatics	
	Masks signs of inadequate	
	anaesthesia/analgesia in Pts	

2002b(8): Outline the pharmacological effects of vasopressin

General: Vasopressin is the synthetic form of the hormone **ADH ADH**:

- Nonapeptide; produced in **hypothalamus**, secreted by **posterior pituitary**
- Stimulated by **change in osmolarity** of blood (2° ↑osm / ↓circulating vol)
- Effect:
 - **V**₁ receptors: GPCR
 - Present in vascular smooth muscle / platelets
 - \uparrow Phospholipase C $\rightarrow \uparrow$ DAG / IP₃ $\rightarrow \uparrow$ Ca
 - ↑SVR, ↓renal arteriolar vasoconstriction (efferent > afferent → maintain GFR)
 - V₂ receptors: GPCR
 - Collecting duct → ↑aquaporin insertion into luminal membrane → ↑H₂O absorption
 - 2° effect → ↑urea reabsorption to ↑osmolarity of renal medulla → ↑H₂O movement through aquaporins
 - V_3 : Anterior pituitary $\rightarrow \uparrow ACTH$ release

Vasopressin:

- Synthetic nonapeptide, ADH analogue
 - Administration:
 - o IV for evaluation
 - o DDAVP available for intranasal administration $\rightarrow 1^{\circ}$ V₂ effects
 - Preferred drug for management of diabetes insipidus (minimal vasoconstrictor effects)
- Dose: Inotrope 1 4IU/hr
 - Arrest: 40IU bolus

Pharmacodynamics

- Uses:
 - Rx ADH-sensitive **diabetes insipidus**
 - polyuria, polydipsia
 - Central cause: \downarrow ADH secretion by posterior pituitary \rightarrow 2° trauma / surgery
 - Nephrogenic: ↓inability for kidney to respond to ADH → not treatable with exogenous ADH
 - Premed as infusion in Pts with von Willebrand's disease (DDAVP) to ↑circulating vWF
 - Management of uncontrolled haemorrhage with oesophageal varices
- MOA: Stimulation of V₁ and V₂ receptors
 - V₁: present in vascular smooth muscle → stimulation → vasoconstriction; most pronounced in splanchnic vasculature (↓portal circulation) → high doses required. Renoprotective
 - Not antagonised by β blockers / denervation
 - V₂: CD and distal DCT of renal tubules \rightarrow ↑aquaporin insertion
- CVS:

- ↑MAP 2° vasoconstriction
 - ↑SVR
 - Pallour 2° cutaneous vasoconstriction
- \circ Coronary artery vasoconstriction \rightarrow angina; MI; ventricular dysrhythmias
 - Even at low doses
 - ↓coronary blood flow
- GIT: ↑peristalsis; N&V; abdo pain
 - o 2° stimulation GI smooth muscle
- Uterine tone ↑ with large doses
- Renal: ↑water reabsorption 2° aquaporin insertion
- Coagulation:
 - ↑factor VIII (vWF) → useful in management of haemophilia especially perioperatively
 - MOA unknown
- Allergy / Anaphylaxis
 - \circ Rare \rightarrow 2° Synthetic
 - \uparrow use \rightarrow Antibody formation \rightarrow ↓duration of action of drug

Pharmacokinetics

Absorption: Nil PO availability \rightarrow rapid metabolised to amino acids via **plasma** /

GI proteases

Distribution: ?

Metabolism: Peptidases to amino acids

- prolonged use \rightarrow antibodies $\rightarrow \uparrow$ breakdown $\rightarrow \downarrow$ efficacy

Elimination: recycled in amino acid pool

Class	Mode of Action	
Osmotic Diuretics (mannitol) Use → rapid ↓ICP	Freely filtered at glomerulus, not reabsorbed $\rightarrow \uparrow$ osmolality of filtrate $\rightarrow \downarrow H_2O$ reabsorption $\rightarrow \uparrow$ urine vol	
Loop diuretics (frusemide) Use CCF to ↓oedema, renal failure	1° action in thick ascending limb of LoH Impair Na ⁺ /Cl ⁻ reabsorption → impairs action of counter- current mechanism → ↓hypertonicity of medulla → ↓H ₂ O reabsorption in collecting duct → ↑vol urine, ↓conc urine	
Thiazide diurectics (HCT) Use moderate HT	1° action of early DCT, impair Na ⁺ / Cl ⁻ reabsorption ↑Na ⁺ / Cl ⁻ → ↑H ₂ O excretion Late DCT → ↑Na ⁺ exchange with K ⁺ /H ⁺ → hypokalaemic hypocloraemic alkalosis	
Aldosterone antagonist (spironolactone)	Competitive antagonist of aldosterone $\downarrow K^+$ excretion (K ⁺ sparing) principal cells $\rightarrow \uparrow Na^+ / H_2O$ excretion	
K ⁺ sparing (amiloride)	Block Na ⁺ /K ⁺ exchange in late DCT independent of aldosterone $\rightarrow \uparrow$ Na ⁺ excretion, \downarrow K ⁺ excretion, \downarrow H ₂ O reabsorption	
Carbonic anhydrase inhibitors (acetazolamide)	Weak diuretic only Non-competitive inhibitor of CA in PCT $\rightarrow \downarrow$ conversion CO ₂ + H ₂ O to H ₂ CO ₃ then HCO ₃ ⁻ and H ⁺ $\rightarrow \downarrow$ Na ⁺ /H ⁺ exchange $\rightarrow \uparrow$ Na ⁺ /HCO ₃ ⁻ excretion + diuresis \rightarrow hyperchloraemic acidosis	
Others→ not classically identified as diuretics as 1° mode of action is anti-HT	Mild K ⁺ sparing effect (see above)	
ACE inhibitor (-oprils) ATII inhibitors (-sarten)	Prevent conversion of ATI → ATII 1° in lungs Antagonise ATII	

2003b(6): List the potential clinical uses of α_2 adrenoceptor agonists and outline the limitation of clonidine for each

General: α_2 adrenoceptors are present on target tissues

- Peripheral sympathetic nerve fibres (presynaptic)
- CNS: Brain and spinal cord (postsynaptic)

- Platelets (limited role in anaesthetic practice)

Action of α_2 receptor activation

- Gi-protein coupled receptor

- Activation $\rightarrow \downarrow$ adenylyl cyclase activity $\rightarrow \downarrow$ **CAMP** production

- Clonidine
 - partial agonist of α_2 adrenoceptor (limited α_1 activity)
 - Available for oral, IV, epidural use

Clinical uses for α ₂ agonists	
Use	Limitation of clonidine
↓MAP	Causes transient ↑MAP (2° initial α ₁
Central inhibition (↓SNS outflow)	stimulation) $\rightarrow \downarrow$ HR (baroreceptor reflex)
↓NA release peripherally	especially with bolus dose
	Prolonged refractory ↓MAP
	Rebound ↑MAP on cessation 2°
	upregulation of NA with chronic use
Analgesia (neuraxial, multi-modal)	Analgesia ^w / _o respiratory depression
Dorsal horn inhibition $\rightarrow \downarrow A\delta$ - C-	Synergistic ^w /opioid in neuraxial blockade
fibre afferent activity	Nil motor / sensory blockade
Augments endogenous opiate	Ceiling effect (partial agonist)
release	Dose limited by side-effects
Sedation (pre-med)	Slow-acting – unsuitable as sole sedating
Central inhibition	agent (~90min)
	Useful as ↓ MAC of VA (dexmetatomidine
	is more selective α_2 agonist $\rightarrow \downarrow \downarrow MAC$)
Anxiolytic (pre-med)	Ceiling effect
Central inhibition	Slow-acting (~90min to peak IV)
	At high doses ↑anxiety
Blunt BP responses to operative	Relatively long-time to act (~90min IV,
stimuli (LMA insertion, tourniquet	3hrs PO)
HT)	Ceiling effect
↓sympathetic outflow	Dose limited by side-effects
Modulates afferent pain fibres	Leventing to people affect
Anti-sialogogue / ↓intra-gastric P	Long time to peak effect
↓ICP/IOP (pre-med)	Long elimination $t_{\frac{1}{2}}$ 9-18hrs
Post-op shivering	Partial agonism (ceiling effect)
Anti-emetic	Side effects
Central inhibition	Large Vd (2L/kg)
↓sympathetic outflow	Causes ++ dry mouth \rightarrow can be useful
↓CBF (↓MAP)	
↓aqueous / ↓CSF production	

2004a(6): Outline the circulatory effect of GTN

Physicochemical:

- Organic nitrate
- Presentation:
 - o S/L spray 400mcg/dose
 - o S/L tablets 300-600mcg
 - o Buccal tabs 1-5mg
 - o Oral tablets 2.6-10mg
 - o Patch 5-15mg/24hrs
 - Injection 1-5mg/ml \rightarrow diluted to 100mcg/ml (0.01%)

Mechanism of Action:

- Metabolised to NO
- NO activates guanylyl cylase $\rightarrow \uparrow cGMP \rightarrow \downarrow Ca^{2+}$ influx into vascular smooth mm / $\uparrow Ca^{2+}$ uptake into smooth ER
- Overall $\downarrow Ca^{2+}$ in cytoplasm \rightarrow relaxation smooth mm \rightarrow vasodilatation

Vessels:

- 1° venodilatation
 - o ↓tendency for VR
 - o ↓preload RV
 - Vasodilation
 - $\circ \quad {\downarrow} \text{end-diastolic pressure / } {\downarrow} \text{vent wall tension} \rightarrow {\downarrow} \text{afterload}$

Heart:

- ↓metabolic O₂ requirements
 - 2° above factors $\rightarrow \downarrow$ myocardial work $\rightarrow \downarrow$ O₂ demand
- ↑coronary BF
 - \circ 2° \downarrow vent wall tension (\downarrow afterload), redirecting blood flow to subendocardium
 - \circ 2° coronary vasodilatation \rightarrow improve O₂ supply
- Results in favourable ↑supply:demand ratio
- CO
 - \downarrow VR \rightarrow \downarrow CO in normal Pts
 - HF Pts $\rightarrow \uparrow$ CO 2° \downarrow SVR and improved myocardial performance

Periphery:

- Vasodilatation
 - Orthostatic hypotension
 - High doses $\rightarrow \downarrow$ systemic vascular resistance (SVR)
 - ↓MAP more pronounced in volume depleted
- Pulmonary
 - $\circ \downarrow PVR \rightarrow \uparrow$ capacitance of pulmonary vessels \rightarrow favour absorption transudate
 - Release of hypoxic pulmonary vasoconstriction $\rightarrow \uparrow$ shunt
- Cerebral
 - ↑CBF/↑ICP 2° vasodilatation
 - Headache common
- Uterus
 - ↓uterine tone
 - $\circ \quad \uparrow \text{blood flow} \rightarrow \uparrow \text{risk haemorrhage}$
- Haematological
 - Rarely precipitates metHb
 - Platelets $\rightarrow \uparrow cGMP \rightarrow \downarrow Ca^{2+}$ in cytoplasm $\rightarrow \downarrow platelet$ aggregation

2004a(7): Describe the mechanisms of action of inotropes and give examples

General: The heart is a demand pump which is tonically innervated by sympathetic and parasympathetic nervous system SNS

- Stimulation of the heart
 - Chronotropy (↑HR)
 - Inotropy (↑contraction)
 - o Automaticity
 - o Lusitropy
 - Dromotropy (AV node conduction)

Parasympathetic Nervous System

- Provides tonic inhibition of heart
- CNX (vagus nn)
- Mediated by ACh (M₂-AChR)

Inotropes

- Agents which when administered **force of contraction (FOC)** of myocardium (**finotropy**) *without altering preload or afterload*.
- May also exert other SNS effects (chronotropy, dromotropy, preload/afterload)

Mechanism of Action

- FOC of myocardium dependent on intracellular [Ca²⁺] with action potential
 MOA of inotropic agents → ↑[Ca²⁺]_i
- cAMP: Intracellular messenger $\rightarrow \uparrow$ activation intracellular proteins by activating protein kinases $\rightarrow \uparrow$ opening of Ca²⁺ channels $\rightarrow \uparrow$ [Ca²⁺]_i
 - ↑cAMP production
 - Stimulation of $G_sPCR \rightarrow \uparrow cAMP \rightarrow \uparrow Ca^{2+}$
 - o ↓breakdown of cAMP
 - Metabolised by phosphodiesterase (5 subclasses) PDE3 important in cardiac muscle
- ↑[Ca²⁺]
 - o Inhibition of exchange pumps
 - Direct ↑Ca²⁺
- Ca sensitiser
 - Sensitise troponin C as well as mitochondrial, smooth muscle ATP dependent K channels

↑cAMP production

Direct β-adrenoceptor stimulation:

- Adrenaline, Noradrenaline, Dobutamine, Ephedrine, Phenylephrine, Isoprenaline
- $\uparrow Ca^{2+}$ via β_1 receptor stimulation $\rightarrow G_s$ -protein activation $\rightarrow \uparrow$ adenylyl cyclase $\rightarrow \uparrow cAMP$

Indirect β -adrenoceptor stimulation (\uparrow NA release at nerve terminal)

- Displacing NA from vesicles into cytoplasm resulting in carrier-mediated diffusion into synaptic cleft
- *↓uptake* 1

- o inhibition by MAO in nerve terminal
- Ephedrine

Glucagon

- GPCR stimulation $\rightarrow \uparrow cAMP$
- Limited use in β blocker overdose

Histamine

- G_s -protein stimulation $\rightarrow \uparrow cAMP$
- Nil useful cardiac role

↓cAMP breakdown

Phosphodiesterase (PDE) Inhibitors:

- Aminophylline (non-specific), Milrinone (PDEIII)
- Inhibit PDE → ↓breakdown of cAMP (cGMP) → effective ↑cAMP

↑Ca²⁺

- Glycosides (digoxin)
 - o Inhibit Na⁺/K⁺-ATPase → \uparrow [Na⁺]_i → Impair Na⁺/Ca²⁺ exchange pump → \uparrow [Ca²⁺]_i
- Calcium
 - IV administration \rightarrow transient \uparrow inotropic effect
 - Indicated only in $\uparrow K^+$ /circulatory collapse

Ca sensitising Agents

- Levosimendan
 - ↑Ca interaction with troponin C → enhance contractility without ↑intracellular Ca
 - Activate ATP-dependent K channels on mitochondrial membrane
 → protect muscle from ischaemia → *ischaemic preconditioning*
 - ATP-dependent K channel of smooth muscle \rightarrow vasodilation
 - Long-acting active metabolite
 - Improvement morbidity compared with dobutamine, nil change 30 day survival

2004b(8): List the classes of drugs used clinically to treat left ventricular failure. Outline their mechanisms of action

General: LVF occurs when the **left ventricle** is **unable to meet** the **metabolic demand** of the **systemic circulation** without *î*central venous pressures

- Temporal relationship: >2 weeks

Classes of drugs used to treat LVF

↓Afterload

ACE-I / ATII receptor antagonist

- \downarrow SVR (\downarrow angiotensin II, III) AT₁R vascular smooth muscle \rightarrow ATII effect
- \downarrow circulating catecholamines \rightarrow ATII effect
- \uparrow Na / H₂O excretion $\rightarrow \downarrow$ Aldosterone action (small ATII)
- ACE found in lung
 - Converts ATI (proprotein) \rightarrow ATII (vasoconstrictor)
 - ATII \rightarrow ↑aldosterone release from adrenal cortex
 - $\circ \quad \text{Aldosterone} \to \uparrow \text{Na/H}_2\text{O} \text{ reabsorption from DCT / CD}$
 - ATII may also have a direct effect on Na/H₂O retention
- Caution: causes K retention \rightarrow consider concomitant therapy with K losing diuretic
- Evidence LV remodelling after AMI

Arterial vasodilators

- Prazosin (α blocker) \rightarrow not effective in heart failure
- Ca channel blockers $\rightarrow \downarrow$ afterload but \downarrow LV function

↓Preload

Diuretics

- \downarrow circulating vol $\rightarrow \downarrow$ preload
 - o Most act on renal tubules
- Loop diuretics (frusemide) most commonly used
 - o Prevent Na/K/2CI ATPase in ascending LoH
 - Non-K sparing
 - ** \downarrow preload before diuretic effect \rightarrow useful in APO
- Thiazides
 - \downarrow Na / H₂O reabsorption in early DCT
 - Need good renal function
- Aldosterone antagonist (Spironolactone)
 - o In severe LVF
 - $\circ~$ Weak Aldosterone competitive antagonist $\rightarrow \downarrow H_2O$ reabsorption CD
- K sparing diuretics (amiloride)
 - DCT blockade Na/H₂O reabsorption independent of aldosterone effect

Nitrates (venodilators)

- Peripheral venodilation $\rightarrow \uparrow$ venous capacitance
- Liberate NO \rightarrow stimulates guanylyl cyclase $\rightarrow \uparrow cGMP$
 - $\circ~$ cGMP → prevents Ca entry into cell from cytoplasm; ↑Ca uptake into SR
 - $\circ~$ Overall effect $\rightarrow \downarrow Ca$ availability for muscle contraction $\rightarrow~$ vasodilation

- Tachyphylaxis without 'drug holiday'

↑Contractility

Digoxin

- Cardiac glycoside
- Inhibition of Na/K ATPase
- ↓conduction at AV node / ↓HR / ↑contractility (weak positive inotrope)
- Nil improvement on mortality, improvement in morbidity

Milronone (PDEIII inhibitor)

- \downarrow breakdown cAMP $\rightarrow \uparrow$ contractility, \downarrow SVR
- Good for short term management; ↑mortality with long term use

Mixed Effect

 β blockers Metoprolol / bisoprolol / carvedilol

- Stimulation $β_1$ adrenoceptor → ↑adenylyl cyclase activity → ↑cAMP → protein phosphorylation / activation protein kinases
- Block β adrenoceptors
 - \circ β_1 myocardium
 - Negatively inotropic / chronotropic
 - ↓MRO₂ myocardium, improve diastolic time
 - Improves O₂ supply / demand ratio
 - $\circ \beta_1 JGA$
 - ↓renin release (↓activation RAA system)
- Cardioselective β blockers (those above) have evidence to improve survival

• Ratio of β_1 / β_2 blockade important

Although negatively inotropic \rightarrow improved cardiac function / survival

2005a(7)/2000a(11)/1997a(11): Outline the main biochemical events involved in noradrenergic transmission. Outline how these may by altered by the use of MAO-I General: Noradrenergic (NA) transmission occurs in

- postganglionic sympathetic nerve fibres excluding those innervating
 - o sweat glands
 - o skeletal mm blood vessels to produce vasodilatation
- CNS cerebral neurones \rightarrow mood / spinal modulation of pain
- NA synthesis and transmission

0

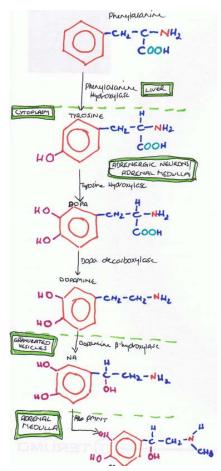
- NA is stored in vesicles in the nerve terminal of postganglionic fibres (present as varicosities along the axon)
 - NA is pre-synthetised into vesicles in the nerve terminal

Phenylalanine –phenylalanine hydroxylase (liver) \rightarrow Tyrosine –tyrosine hydroxylase (cytoplasm) \rightarrow DOPA –DOPA decarboxylase (cytoplasm) \rightarrow Dopamine –dopamine β -hydroxylase (cytoplasm) \rightarrow NA

- Arrival of action potential causes opening of voltage-gated Ca²⁺ channels → exocytosis of vesicles
- NA is removed from the synaptic cleft by
 - Binding to postsynaptic receptors α and β (> affinity for α receptors)
 - GPCR
 - Binding to presynaptic receptors (α_2 receptors)
 - Negative feedback / inhibition of further NA release by LCa²⁺ influx
 - Reuptake into presynaptic neurones (major mechanism) \rightarrow 1° uptake 1
 - Broken down by MAO to intermediaries
 - Resynthesised into vesicles
 - Diffusion out of cleft (*Uptake 2*)
 - Small amount of breakdown in synaptic cleft and tissues by COMT directly to normetanephrine
 - Intermediaries broken down in circulation by COMT to VMA and DOMA
- NA is metabolised sequentially by:
 - Monoamine oxidase (MAO) \rightarrow present in nerve terminals
 - Located on outer mitochondrial membrane
 - 2 subtypes: MAO-A (deaminates NA, serotonin, adrenaline); MAO-B (deaminates phenylethylamine, tyramine)
 - Catechol-O-methyltransferase (COMT) \rightarrow other tissues
- Role of MAO \rightarrow catalyses **oxidative deamination**
 - Converts NA into physiologically inactive deaminated derivatives
 - 3,4-dihydroxymandelic acid (**DOMA**)
 - o DHPG
 - The derivatives enter circulation and are metabolised by COMT forming
 - o VMA
 - o MHPG
 - Which are excreted in urine

MAO-I: Antidepressant in Pts resistant to other forms of therapy Types:

Selective (MAO_A-I) \rightarrow Selegeline / Non-selective (MAO_A-I, MAO_B-I) \rightarrow Iproniazid Competitive \rightarrow moclobemide / Non-competitive (covalently bonds MAO) \rightarrow Selegeline MOA: Forms complex with MAO (especially cerebral neuronal) Pharmacodynamics:


- $\uparrow NA$ within nerve terminal $\rightarrow \uparrow NA$ within vesicles available for release
- ↑SNS activity: ↑HR, ↑T°C, mydriasis
- \uparrow CNS activity: Agitation, seizures \rightarrow coma
- JMAP: 2° false neurotransmitter accumulation (octopamine) in cytoplasm of sympathetic nn terminals

o Less potent vasoconstrictor than NA

Drug Interaction:

0

- Opioids, sympathomimetics, TCAs, antidepressants, fluoxetine
 - ++ NA accumulation
 - Causes HT, CNS excitation, delirium, seizures, death
- VA: ↑VA requirements (↑MAC)
- Tyramine rich foods \rightarrow Not broken down in GIT, instead absorbed $\rightarrow \uparrow production$ of NA \rightarrow ++accumulation

2005b(8): Describe the adverse effects of β -adrenoceptor antagonists General: β adrenoceptors are a group of **G**_s protein coupled receptors

- Stimulated endogenously by: NA, adrenaline

 β adrenoceptors are classified into β_1 and β_2

- β₁: myocardial muscle cells (also JGĀ)
 - o Stimulation: ↑adenylyl cyclase \rightarrow ↑**cAMP** \rightarrow ↑intracellular Ca²⁺
 - Stimulation results in: positive inotropy, chronotropy, dromotropy, lusitropy
 - Renal: ↑renin production \rightarrow ↑ATII (constriction), ↑aldosterone (Na⁺ retention)
- β₂: smooth muscle of blood vessels (veins, arterioles); CNS; adipose tissue; internal urethral sphincter; bronchial smooth muscle
 - Stimulation (smooth muscle): \uparrow adenylyl cyclase → \uparrow **cAMP** → inhibition of MLCK
 - Stimulation (elsewhere): \uparrow adenylyl cyclase → \uparrow **cAMP** → \uparrow Ca influx
 - Results in: vasodilatation, venodilatation, heightened arousal, ↑BSL, lipolysis, glycogenolysis
 - Also present on GIT, eye
- β adrenoceptors antagonists inhibit the activation of the β adrenoceptor
 - Uses:
 - CVS: treatment of HT, angina, peri-myocardial infarction
 - o Other: Pheochromocytoma, ↑thyroidism, HOCM, Glaucoma
 - All are competitive antagonists
 - **Selectivity**: β_1 and non-selective ($\beta_1 \beta_2$)
 - β_2 mediates unwanted effects
 - β_1 selective (cardioselective): Atenolol, esmolol, metoprolol
 - Some are **partial agonists** (intrinsic sympathomimetic activity)
 - Unable to illicit full response despite adequate receptor occupancy
 - Less likely to induce bradycardia and heart failure
 - Carvedilol, bisoprolol
 - Membrane stabilising properties
 - Minimal clinical significance at therapeutic doses
 - Effects:
 - Heart: Negative inotropy/ chronotropy/ dromotropy/ lusitropy, ↓SA node automaticity, ↓AV node conduction
 - \uparrow CorP time $\rightarrow \uparrow$ O₂ supply to myocardium
 - ↓MRO₂
 - In Pt with LVF \rightarrow may precipitate HF (rare for the selective β_1 antagonists and partial agonists) as \downarrow CO
 - Inappropriate bradycardia, orthostatic hypotension (↑with ↓blood vol)
 - Class 2 anti-arrhythmic
 - Useful in ÅF
 - Sotolol can produce unwanted arrhythmia (torsades de pointes)

- o Circulation: Overall ↓MAP
 - \downarrow HR $\rightarrow \downarrow$ CO
 - β_1 blockade at JGA $\rightarrow \downarrow$ RAA $\rightarrow \downarrow$ vasoconstriction, \downarrow aldosterone production
 - Presynaptic β_2 blockade $\rightarrow \downarrow$ NA release
 - In elderly \rightarrow may cause orthostatic hypotension
 - In anaesthesia → refractory hypotension, ↓effectiveness of vasopressors
- o Respiratory: Bronchoconstriction/spasm (β₂ blockade)
 - ↑in asthmatics
 - Can ↑sensitivity of airway to instrumentation
- Metabolic: Non-selective blockade
 - Non-diabetic: Obtund normal response to exercise / hypoglycaemia
 - Mask catecholamine related Sx of ↓BSL

 - Lipid metabolism: ↑trigs, ↓HDL
- o CNS: Lipid soluble agents (propranolol, metoprolol)
 - Anxiolytic
 - May cause: depression, hallucinations, nightmares, paranoia, fatigue
 - $\downarrow IOP \rightarrow good for glaucoma$
- o GIT:
 - Dry mouth, GI disturbance
- o Urinary retention
- Uterine relaxant (propranolol): risk uterine atony

All side-effects are more pronounced in Pts undergoing anaesthesia

2006a(1): Outline the pharmacological management of bronchoconstriction in acute severe asthma. Include mechanisms of action and potential adverse effects

General: Asthma is a **chronic disease** characterised by **airways hyperresponsiveness**

- \uparrow Bronchial smooth muscle tone \rightarrow bronchoconstriction
- ↑Mucous production
- Acute attack \rightarrow gas trapping / \uparrow physiological dead space

Acute management bronchoconstriction

Supplemental O₂

- \uparrow FiO₂ \rightarrow \uparrow alveolar O₂ in areas undergoing gas exchange
- Adverse effects:
 - o Removal of hypoxic pulmonary vasoconstriction to non-

ventilated units $\rightarrow \uparrow$ shunt $\rightarrow \downarrow O_2$ content of blood

Adrenaline: Non-specific α/β adrenoceptor agonist

- Route: Nebulised (direct airways, ↓systemic effects); IM; IV
- Dose: 1mg neb; 1mg IMI
- MOA:
 - $\circ \quad \beta_2 \text{ agonist effect: } G_i PCR \rightarrow \uparrow adenylyl \text{ cyclase} \rightarrow \uparrow cAMP \rightarrow \downarrow Ca$
 - \downarrow bronchial smooth muscle tone $\rightarrow \downarrow$ airways resistance
 - ↓mucous production → ↓airways resistance
- Adverse Effects: 2° α/β agonist effects systemically
 - α_1 : peripheral vasoconstriction $\rightarrow \uparrow BP$; cutaneous constriction (pallour); difficulty with obtaining venous access
 - \circ β₁: ↑HR, precipitate arrhythmias
 - \uparrow MRO₂ \rightarrow ischaemia
 - Nausea, abdominal pain
 - \downarrow insulin $\rightarrow \uparrow$ BSL

Salbutamol: Selective β agonist ($\beta_2 > \beta_1$)

- Route: Nebulised
- Dose: 5mg neb
- MOA:

-

- o Non-selective β agonist, nebulised further \downarrow systemic effects
- o GPCR → \uparrow adenylyl cyclase → \uparrow cAMP → \downarrow Ca
 - ↓bronchial smooth muscle tone
 - jsecretions
- Adverse Effects: related to systemic β agonist effects
 - o β_1 : \uparrow HR; palpitations
 - $\circ \quad \beta_2: \text{ stimulation of skeletal muscle} \to \text{tremour}$
 - sweating
 - postural hypotension (vasodilator)
 - $\circ~$ Removal of hypoxic pulmonary vasoconstriction \rightarrow needs supplemental O_2
 - $\downarrow K^+$ by ↑intracellular shift
 - o **Ň&**V
 - o ↑BSL

Ipratropium Bromide: Anticholinergic (Atrovent)

- Route: Nebulised
- Dose: 500µg
- MOA: Competitive inhibition of mAChR (M3) on bronchial smooth muscle \rightarrow GPCR \rightarrow blockade $\rightarrow \downarrow$ phospholipase C $\rightarrow \downarrow$ DAG, IP₃ \downarrow Ca
 - ↓bronchoconstriction effect of vagal stimulation
 - Inhibit ACh enhancement of mediator release from mast cells
 - Nil change in secretions
- Adverse Effects:
 - Minimal systemic effects via neb
 - o Unpleasant taste

Corticosteroids: Minimal effect in acute setting as onset ~6-8hrs after admin

- Route:
 - PO: Prednisolone 1mg/kg
 - IV: Hydrocortisone 100 300mg tds
- MOA: Bind to intracellular receptors to augment gene transcription / translation
 - \downarrow inflammatory mediators: \downarrow phosphlipase A₂ production → \downarrow arachidonic acid → \downarrow PG / leukotrienes / IL production
 - \downarrow leakiness of capillaries $\rightarrow \downarrow$ oedema
- Adverse Effects:
 - ↑BSL (↑gluconeogenesis)
 - Adrenal suppression \rightarrow inhibition of hypothalamic-pituitary-adrenal axis \rightarrow Addisons \rightarrow must wean if high dose > 5 days
 - o Loss of subcutaneous connective tissue
- \downarrow platelet aggregation (\downarrow arachidonic acid $\rightarrow \downarrow$ TXA₂) $\rightarrow \uparrow$ bleeding *Methylxanthines:* Theophylline / aminophylline
 - Route: IV / PO / PR
 - Dose:
 - PO: 900mg divided doses
 - o IV 5mg/kg bolus; infusion 0.5mh/kg/hr
 - MOA: Phosphdiesterase III inhibitor
 - \downarrow breakdown of cAMP $\rightarrow \uparrow$ cAMP $\rightarrow \downarrow$ Ca \rightarrow bronchial relaxation
 - $\circ \downarrow$ influx Ca into smooth muscle \rightarrow stabilises membrane
 - Antagonises adenosine effect on mast cells \rightarrow stabiliser
 - Adverse Effects:
 - CVS: positive inotrope/chronotrope $\rightarrow \uparrow CO; \downarrow SVR \rightarrow \downarrow BP$
 - Arrhythmogenic at high doses → VF
 - o Inhibition of hypoxic pulmonary vasoconstriction \rightarrow supplement O₂
 - CNS stimulant \rightarrow ↑risk seizure; ↓CBF
 - ↑gastric acid production
 - ↓gastric motility
 - Diuretic \rightarrow ↓Na reabsorption; ↑K excretion (hypokalaemia)
 - Narrow therapeutic index

Volatile Anaesthetic Agents

- Route: inhaled

- MOA: ↓ smooth muscle tone NANC (non-adrenergic, non-cholinergic)
- Adverse effects:
 - o Minimal if in the course of anaesthetic
 - \uparrow fraction $\rightarrow \downarrow$ BP

Helium (Heliox)

- MOA: Lower density (and specific gravity) than air / O2
 - During turbulent flow $\rightarrow \uparrow$ velocity cf O₂
 - $\circ \downarrow$ work of breathing
 - Improves oxygenation
- Adverse Effects:
 - o Minimal
 - o Needs to be on machine
 - $\circ \downarrow$ inspired O₂ cf O₂ alone

Magnesium

-

- Route IV
- Dose: 20mmol
- MOA: Smooth muscle relaxation → Ca channel blockade → ↓Ca
 ↓neutrophilic burst rate → ↓inflammatory mediator release
 - Adverse Effects:
 - o Sedation
 - o Hypocalcaemia

2006b(1)/1998a(14): Describe the use of different sympathomimetics to treat hypotension occurring as a result of a subarachnoid block. Outline the advantages and disadvantages of each of these agents

General: SNS made of pre- and post-ganglionic fibres

- Pre-ganglionic: arise from lateral horns of spinal cord → anterior rami → sympathetic chain / Splanchnic nerve
- Post-ganglionic: Unmyelinated \rightarrow spinal nerve grey rami

SNS supply:

- Heart → tonic stimulation to oppose tonic parasympathetic control (T1-4)
- Blood vessels \rightarrow tonic constriction of vessels
- Lungs \rightarrow bronchial smooth muscle tone
- Coeliac ganglion (gut, kidney)
- Superior/inferior mesenteric ganglion (descending colon, bladder, genitals)

Subarachnoid (spinal) Blockade

- Administration of a LA / opioid cocktail into intrathecal space
 - Blocks transmission of:
 - Sympathetic B fibres (small unmyelinated post-ganglionic fibres)
 - Aδ- and C-fibres +/- motor blockade
 - Level of bloackade is dose-dependent
- Removal of SNS stimulation will result in:
 - Heart (high block ~T1-4): ↓chronotropy, ↓dromotropy, ↓inotropy, ↓lusitropy
 - $\downarrow SV \rightarrow \downarrow CO$
 - o Blood vessels: venodilation, vasodilation
 - \downarrow tendency for VR (\downarrow preload) \rightarrow up to 75% of blood volume can be taken up by venous capacitance system
 - ↓TPR (↓afterload)

Management of UMAP 2° subarachnoid blockade

Drugs can be classified by:

- Type of receptor activation (α/β)
- Direct /indirect action
 - Direct stimulation of adrenoceptors
 - o Indirect stimulation of adrenoceptors via ↑NA release

All non-endogenous sympathomimetics have this effect >>ephedrine

Action	Advantages	Disadvantages
Mixed α/β agonists:		
↑TPR (vasoconstrict) α ₁ effe	ct	
↑VR (venoconstrict) α₁ effect	$t \rightarrow limited$	
↑CO (↑HR, contractility, SV)	β₁ effect	
Adrenaline	Low dose infusion $\rightarrow \beta$ effects	\downarrow MAP 2° β_2 stimulation (\downarrow TPR)
Direct α/β stim	1° → ↑CO, ↑corP	Need CVC for infusion
	High dose/bolus $\rightarrow \alpha_1 1^\circ \rightarrow$	Must be diluted
	\uparrow TPR/ \uparrow VR \rightarrow useful in arrest	
	Short acting	
	No tachyphylaxis	
Ephedrine	Easy to draw up (1:10)	Tachyphylaxis (NA depletion in
Direct α/β	Rapid onset (1-2min)	terminals)
Indirect ↑NA release	↑corP	Arrhythmogenic
 Eph transported to nn 	Not metabolised by	Renal dependent excretion
terminal thru <i>uptake 1</i> \rightarrow	MAO/COMT	
displace NA from vesicles	Relatively long duration of	
into cytosol \rightarrow some	action (t _{½β} 4hrs)	
degraded by MAO, rest	Peripheral IVC OK	
release via <u>carrier-</u>	Nil effect uterine BF	
mediated diffusion into		
cleft (Ca-independent as		
not exocytosis)		

2. Eph inhibit <i>uptake 1</i>				
Eph inhibit MAO				
Dopamine	Low dose infusion Infusion			
Direct α/β	$\rightarrow \beta_1 1^\circ \rightarrow \uparrow CO, \uparrow corP$	Difficult titratability b/n low		
Indirect NA release	→ ↑NA release	(<10mcg/kg/min) and high		
	High infusion $\rightarrow \alpha \ 1^{\circ} \rightarrow \uparrow TPR$	(>10mcg/kg/min)		
	/ ∱VR	Interact MAOI		
	↓Arrhythmogenicity cf	Need CVC		
	adrenaline	Short acting (10min)		
α ₁ agonists				
Peripheral vasoconstriction -	→ ↑TPR → ↑MAP			
↑VR (venoconstriction)				
ΝΑ (α ₁ , min β)	Duration action 30-40min	Reflex ↓HR 2° baroreceptor reflex		
↑TPR / ↑VR	↑CorP	\rightarrow \downarrow CO		
		Rapidly metabolised (MAO/COMT)		
		Arryhthmogenic		
Metaraminol (1° α_1 , min β)	1:20 dilution	Reflex ↓HR 2° baroreceptor reflex		
Direct/indirect	Rapid onset (1-2min)	\rightarrow \downarrow CO		
↑TPR	Relatively long action (1hr)	Rapid ↑MAP → LVF in susceptible		
	↑coronary BF (indirect)	Pts		
	Nil effect uterine BF			
Phenylephrine	Not arrhythmogenic	$Reflex \downarrow HR \to \downarrow CO$		
Nil β effect		↓uteroplacental BF		
β1 agonists: Stimulate myoo	cardium (↑CO); Nil effect TPR			
Dobutamine		Not countering original mechanism		
		for ↓MAP		
Intake 1: high affinity for NA relatively low may rate of untake				

Uptake 1: high affinity for NA, relatively low max rate of uptake Uptake 2: low affinity for NA, higher max rate of uptake (Accumulates adrenaline and isoprenaline)

2006b(7)/05b(5): Outline the drug and non-drug Rx of ventricular fibrillation in an adult. Briefly describe their mechanisms of action and potential adverse effects. DO NOT discuss BLS, airway therapies & O₂

General: Ventricular fibrillation (VF) is a life threatening tachyarrhythmia

- Rapid, irregular ventricular activation
- No mechanical effect
- Nil peripheral pulses \rightarrow cardiac arrest
- ECG: Wide complex QRS, nil p waves

Aim:

- CEASE IRREGULAR RHYTHM
- MAINTAIN PERFUSION OF IMPORTANT ORGANS

Electrical defibrillation

- Only effective treatment \rightarrow attempt 1st
- 1 shock
 - o Biphasic 200J
 - Monophasic 360J
- Aim: Terminate irregular rhythm

Drug Therapy

Adrenaline $\rightarrow 1^{st}$ line drug

- 1mg, repeated every 3 minutes
- MOA: α / β agonist $\rightarrow 1^{\circ}$ action in arrest
 - α_1 : GPCR $\rightarrow \uparrow$ phospholipase C $\rightarrow \uparrow$ DAG, IP₃, Ca²⁺
 - ↑SVR 2° vasoconstriction
 - \circ \uparrow CBF / \uparrow coronary blood flow

Adverse Effects

- Minimal in the arrest setting

Antiarrhythmics $\rightarrow 2^{nd}$ line

Amiodarone: Class 3 antiarrhythmic

- 300mg
- MOA: Partial antagonist α / β receptors
 - ↑cardiac AP 2° ↑K⁺ channel opening
 - Class 1 properties $\rightarrow \downarrow$ opening fast Na channels
 - Class 4 properties $\rightarrow \downarrow$ opening Ca channels (\downarrow plateau)
- Adverse Effects
 - AV node block \rightarrow 3° blockade
 - If hypolakalaemic → ↑risk arrhythmias
- Lignocaine: Class 1b antiarrhythmic
 - 1.5mg/kg
- MOA: Blockade of fast Na channels $\rightarrow \downarrow$ rate of depolarisation, \downarrow peak
 - Membrane stabiliser
- Adverse Effects
 - Less effective at terminating arrhythmias than amiodarone

Others

Vasopressin: synthetic ADH \rightarrow **not part of resuscitation algorithm in Oz** MOA: Agonist V₁ receptors \uparrow phospholipase C \rightarrow peripheral vasoconstriction Adverse Effects: Coronary artery vasoconstriction NaHCO₃

MOA: Reverse acidosis (metabolic acidosis 2° \uparrow anaerobic metabolism) - Correct $\downarrow K^+$

2007b(8): Write short notes on anti-hypertensive drugs that exert their action by blocking effects of angiotensin

General: Activation of RAA system important in response to *i*circulating vol

- Ultimate aim to *†*Na/H₂O reabsorption in DCT/CD (1° Aldosterone effect)
- \uparrow SVR (afterload) \rightarrow vasoconstriction \rightarrow maintain MAP (1° ATII effect)

Chronic HT 2° inappropriate activation RAA system

- renal artery stenosis $\rightarrow \downarrow$ afferent arteriolar pressure $\rightarrow \uparrow$ renin release by JG cells
- reset (Lactivity) high pressure baroreceptors (carotid sinus, aortic arch) in setting of
- chronic HT \rightarrow prevent inhibition renin release

AntiHT ACEI

- Pharmacokinetics: 3 groups
 - Active drug metabolised to active metabolites \rightarrow captopril
 - Prodrugs activated by hepatic metabolism \rightarrow ramipril
 - $\circ \quad \text{Active drug excreted unchanged in urine} \rightarrow \textit{lisinopril}$
- MOA: prevent conversion ATI → ATII (and less potent ATIII)
 - o ↓aldosterone release
 - ↓peripheral vasoconstriction
- Use:
 - o HT & CCF
 - $\circ \quad \downarrow$ mortality in HF assoc with MI 2° \downarrow cardiac remodelling
- Side effects:
 - o Prevents breakdown of kinins (eg bradykinin)
 - Persistant cough
 - Angioedema
 - o **Rash**
 - Headache
 - o ↑K
 - o ↑renin levels (ATII acts part of negative feedback inhibition)
 - Drug interactions:
 - \circ NSAIDs \rightarrow critical \downarrow renal afferent arteriole \rightarrow precipitate renal failure
 - \circ $\uparrow \uparrow K$ with K-sparing diuretics

Angiotensin II receptor antagonist (irbesarten)

- MOA: competitively inhibit AT₁ receptor
 - Adrenal cortex $\rightarrow \downarrow$ aldosterone release
 - $\circ \quad \text{Peripheral vessels} \rightarrow \text{prevent vasoconstriction}$
 - Some direct ATII receptors on DCT/CD
- Use:
 - o As with ACEI
 - \uparrow renin (2° blocking ATII negative feedback) → $\uparrow\uparrow$ ATII levels
 - o Better tolerated in those with kinin related $S/E \rightarrow$ cough, angioedema
- AT₂R remains unblocked
 - May possess cardioprotective properties

MAKEUP: Discuss how anti-arrhythmic drugs affect the cardiac action potential

General: Classically, anti-arrhythmic agents have been classified according to the **Vaughan-Williams Classification** which was based on microelectrode studies on isolated cardiac fibres

- Based on effect on cardiac action potential (specific ion channel blockade)
- Largely historical
- Found many anti-arrhythmic agents do not fit into one class only (eg amiodarone belongs to class I, III, IV
- Some do not fit into classification
 - o Digoxin
 - o Adenosine

Myocardial Action Potential Phase 0: Opening of fast inward Na channels

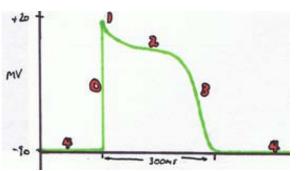
- Phase 1: Spike
 - Closure of fast Na channels
- Phase 2: Plateau
 - Opening of L-type Ca channels

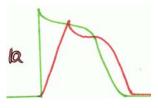
Phase 3: Repolarisation

- Complete closure of Na channels; closure of Ca channels
- Opening of K channels \rightarrow inward movement
- Active pumping of Na out of cell, Ca into SR
- Phase 4: Diastolic potential
 - remains at RMP in non-pacemaker cells

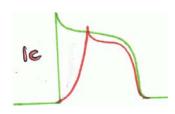
Class 1

- Block fast inward Na channels


- Membrane stailisers


Class 1a: Procainimide; Quinine

- Membrane stabilisers $\rightarrow \downarrow \text{excitability of non-nodal}$ regions
 - Effect on AP:
 - o ↓slope phase 0
 - \circ \downarrow height of spike
 - \uparrow duration AP $\rightarrow \uparrow$ QT / QRS
 - Prolongs refractory period
- Class 1b: Lignocaine, phenytoin
 - Stabilises membrane → ↓spontaneous phase 4 depolarisation outside atria → ↓aberrant beats (eg ventricular dyrhythmias)
 - Effect on AP:
 - o Little effect phase 0
 - o ↓height of spike
 - ↓duration AP
 - Shortens refractory period
- Class 1c: Flecainide


By Amanda Diaz

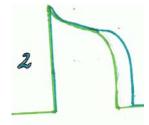
- Membrane stabilisers \rightarrow suppress re-entrant rhythms

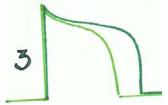
- Effect on AP:
 - o ↓phase 0 depolarisation
 - Nil effect duration AP \rightarrow °effect refractory period

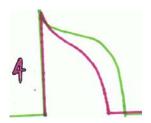
Class 2 esmolol, metoprolol, atenolol, propranolol, sotolol

- Exert effect on pacemaker cells and ↓conduction AV node
- ↑refractory period, ↓automaticity
- Effect on AP:
 - o Nil change phase 0
 - ↓conduction velocity
 - ↑refractory period

Class 3 amiodarone, sotolol, bretylium


- Block K channels


- $\uparrow\uparrow\uparrow$ refractory period \rightarrow suppress re-entrant rhythms
- Effect on AP:
 - Nil change phase 0
 - o ↑duration AP
 - o ↓automaticity
 - o ∱QT


Class 4 Verapamil, Diltiazem

- Block L-type Ca channels

- ↓automaticity SA node, ↓impulse propagation AV node
- Effect on AP:
 - o Nil change phase 0
 - o ↓phase 2 plateau
 - $\circ \downarrow AP$ duration

MAKEUP: Discuss IV fluids

	pН	Osmolarity	Electrolyte	s	Sugar	Elimination
	• •	S	aline Solution	IS	• •	
0.9%	4.5 – 7	304 mOsm	Na 150	CI 150	0	-
3%	5.6	1000 mOsm	Na 500	CI 500	0	-
7.5%	5.6	2567 mOsm	Na 1283	CI 1283	0	-
	•	De	xtrose Solutio	ons		
5%	4	252 mOsm	(0	50g/L Glucose	t _{½β} 30min
4%D 1/5NS		310 mOsm	Na 30	CI 30	40g/L Glucose	t _{½β} 30min
	•	Ha	artmann's (CS	SL)		•
	5-7	274 mOsm	Na 129	CI 109	0	-
			K 5	Ca 2		
			Lactate 29			
			Mannitol			
20%	5 – 7	1098 mOsm	(0	100g/L Mannitol	$t_{1/2\beta}$ 72min
			Albumin			
4% (50g/L)		290 mOsm	Na 140	CI 128	0	t _{½β} 24hrs
20% (250g/L)				•		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	•	Dextran	s (fermenter s	sucrose)		•
70		300 mOsm	Na 150	CI 150		t _{½β} 6hrs
40 (anaphylaxis 1:3000)		300 mOsm	Na 150	CI 150		t _{½β} 2hrs
		Sj	nthetic Colloi/			
Gelofusin MW 30kDa	7.4	274 mOsm	Na 154	CI 120		t _{½β} 3hrs
Haemocell	7.3	301 mOsm	Na 154	CI 154		t _{½β} 3hrs
MW 35kDa			K 5.1	Ca 6.25		
Anaphylaxis: 1: Excreted renal Care with blood	(80%); bile	(10%) ons (citrated bloo	d) → Ca will ↑	clotting		

MAKEUP: Discuss the pharmacology of α_1 antagonists. Compare and constrast phentolamine, phenoxybenzamine and prazosin

General: α -adrenergic antagonists bind selectively to α -adrenergic receptors

- prevent activation by catecholamines
 - o cardiac and peripheral vasculature

	Phentolamine	Phenoxybenzamine	Prazosin
		hysicochemical	
Chemical	Imidazoline	Haloalkylamine	Quinazoline
Presentation	Clear sol ⁿ 10mg/ml (mesilate)	Tablets 10mg Clear sol ⁿ 50mg/ml (HCl)	Tablets 0.5, 1, 2, 5mg (HCl)
Route / Dose	IM: 5 – 10mg IV: infusion 0.1 – 0.2mg/min (5%D or NS)	PO: 10 – 60mg/day divided IV: infusion 10 – 40mg/hr (5%D or NS)	PO: 1mg bd – tds max 20mg daily
	Ph	armacodynamics	
Use	Perioperative Mx of phaeochromocytoma Acute intraop HT	Pre-op Rx phaeo Hypertensive crisis Raynaud's	HT Raynauds AR / MR Phaeo Bladder neck obstruction
MOA	Transient competitive reversible blockade of α receptors $\alpha_1:\alpha_2$ 3-5:1 Onset rapid: 1 – 2min	Covalent competitive irreversible blockade of α receptors $\alpha_1 > \alpha_2$ Slow onset (60min IV)	Highly selective competitive blockade α_1 receptors
CVS	$\begin{array}{l} \alpha_1: \downarrow SVR \ 2^\circ \ vasodilation \\ \rightarrow \ reflex \ \uparrow HR \ / \ \uparrow CO \\ \alpha_2: \ presynaptic \ inhibition \\ \rightarrow \ \uparrow NA \ release \ \rightarrow \ + \\ inotropy \\ \ \uparrow CBF \\ Class \ I \ anti-arrhythmic \end{array}$	α₁: ↓SVR reflex ↑HR / ↑CO ↓catecholamine induced arrhythmias	Coronary artery dilation Veno / vasodilation \downarrow SVR / PVR $\rightarrow \downarrow$ BP Min reflex \uparrow HR Direct neg chronotrope effect SA node \uparrow CO w HF
Resp	α ₁ : Pulmonary artery vasodilator ↑VC; ↑FEV ₁ ; ↓histamine induced bronchoconstrict ⁿ Nasal mucosal congestion → stuffy nose	Nasal congestion (prominent) → indicator of sufficient dose	
GIT / renal	†salivation; †gastric acid prod ⁿ ; †motility → abdo pain	Min effect RBF	Min effect RBF / GFR Relax ⁿ trigone / sphincter
Endocrine		↑insulin release (blocks inhibitory action of adrenaline)	↑plasma NA Min effect renin
CNS		Miosis ↓CBF (^w /↓BP only)	
Toxicity / SE	Orthostatic hypotension Dizziness Abdo pain / diarrhoea CV collapse / death Impotence	Orthostatic hypotension Dizziness Sedation (chronic use) Paralytic ileus Impotence	Orthostatic hypotension Dizziness Drowsiness Nausea Urinary urgency '1 st dose phenomenon' = dizziness; faintness 2°

			↓BP, ↓HR, ↓VR		
Pharmacokinetics					
Absorption	PO:20%	PO: 20 – 30%	PO: 40 – 60%		
Distribution	50% protein bound	Highly lipophilic	92% protein bound (AAG) Vd 0.5 – 1L/kg		
Metabolism	Extensive	Hepatic; deacetylation	Hepatic; dealkylation Active metabolites		
Elimination	Urine; 10% unchanged	Urine & bile	Bile; <10% unchanged CL: 4ml/kg/min		
	t _{½β} : 10 – 20min	t _{½β} : 24hrs	t _{½β} : 2.5 – 3hrs		

Properties	Dexmetatomidine	Clonidine
	Physicochemical	1
	Imidazole derivative	Aniline derivative
Isomerism	Purified racemic mixture \rightarrow D	No
	stereoisomer is active (Dex)	
Presentation	Solution 0.1mg/ml in NaCl	Tablets (0.1/0.25/0.3mg)
	Preservative free	Solution 0.15mg/ml
	Pharmacodynamics	
Mechanism of action	Full agonist	Partial agonist
	Potent α_2 agonist, minimal α_1	Less potent α_2 agonist, some
	activity	α₁ activity
	(α ₂ : α ₁ 1600:1)	(α ₂ : α ₁ 200:1)
	Central/spinal cord (postsynaptic)	
	SNS (presynaptic)	
	$\alpha_2 = G_i PCR \rightarrow \downarrow cAMP \rightarrow cell inhibition$	
Uses	Sedation ventilated ICU Pts	HT
	Adjunct to GA	Blunt surgical stimulation
		↓Opioid requirements
		Post-op
		IV/regional anaes
		Anti-sialogogue
		Migraine
		Opiate ^w /drawal
		Chronic pain syndromes
		↓Post-operative shiver
Dose	IV infusion $1\mu g/kg \ 10min \rightarrow 0.2$ -	PO: 0.5-0.6mg tds
	0.7µg/kg/hr up to 24hr	IV: 0.15-0.3mg tds
		Epidural: 0.15mg
Onset/Duration		10min / 3-7hr (IV)
Cardiovascular	Nil initial HT	Bolus: initial HT (α_1) then
	Prolonged ↓MAP	Prolonged ↓MAP (central α ₂)
	Nil change CO/HR	Reflex ↓HR with HT
		(baroreceptor reflex)
		Nil change CO
		Rebounnd HT on abrupt cessation
CNS	Sedation \rightarrow Pt remains cooperative	Sedation
CINS	and responsive while ventilated	Sedalion
	$Central \alpha_2$	effect
	Anxiolytic	Anxiolytic
	Central a ₂	
GIT		↓ICP / ↓IOP
		Anti-sialogogue
Metabolic		↓Intragastric P
IVIELADUIIC		↓Insulin release (small ↑BSL)
Apposthatic Implications	MAC Opioid sporting	↓circulating catecholamines
Anaesthetic Implications	↓MAC, Opioid sparing	↓MAC, Opioid sparing,
		obtunds tourniquet HT, ↓propofol req for LMA insertion
	Pharmacokinetics	

MAKEUP: Write short notes on the pharmacology of dexmetatomidine and compare with clonidine

Distribution	Vd 1.33L/kg;	Vd 1.7-2.5L/kg
	t _{½α} 6min	20% protein bound
	94% protein bound	
Metabolism	Extensive hepatic metabolism	<50% hepatic metabolism
	Glucoronidation/methylation	
Elimination	95% urinary excretion	65% unchanged urine
		20% faeces
	t _{½β} 2hrs;	t _{½β} 6-23hrs
	CL 39L/hr (7ml/kg/min)	CL 1.9ml/kg/min