Anticoagulants

1998b(14)/1995b(14): Outline the chemistry of heparin. Describe its mechanism of action and list its toxic effects
General: Heparin is an endogenous anionic mucopolysaccharide organic acid with many sulphate residues.
PHYSICOCHEMICAL
- Not a single substance, but a mixture of variable weight mucopolysaccharides
 o MW 5000 – 25000 Da
- Located in many tissues including liver, mast cells
- Exogenous heparin is extracted from bovine lung or porcine intestine
- Heparins do not cross BBB / placenta
Presentation
- Prepared as unfractionated (5000 – 25000 Da) or low molecular weight heparin (2000 – 8000 Da)
 o LMWH is derived from depolymerised heparin (chemical or enzymatic degradation)
- Unfractionated: Presented as a Na or Ca salt 1000 – 25000 IU/ml
 o IU used 2° heterogeneity of compound → variable potency
- LMWH: Presented in mg/ml
 o More consistent in terms of potency
PHARMACODYNAMICS
Uses:
- Unfractionated heparin:
 o IV infusion – treatment DVT, PE, unstable angina, peripheral artery occlusion, ACS
 o S/C – DVT prophylaxis
- LMWH: DVT prophylaxis, treatment of PE, ACS
Dose
- Unfractionated heparin:
 o IV infusion: Titrated up from 1000IU/hr to maintain APTT 1.5-2 x control value
 o S/C: 5000IU bd / tds
- LMWH:
 o S/C: 1 – 1.5mg/kg once daily dosing
Mechanism of Action:
- ATIII inhibits effect of thrombin by binding it and forming an inactive complex (ATIII-thrombin complex)
- Heparin binds to ATIII and ↑affinity for thrombin by 1000-fold
- Thrombin is more sensitive to binding → unfractionated heparin binds to both ATIII and thrombin
 o Xa is inhibited to a lesser extent (requires heparin to bind only to ATIII)
 o Higher doses of unfractionated heparin will also bind other plasma proteins including IXa, XIa, XIIa
- LMWH ↑action of ATIII on Xa but have no effect on rate of binding with thrombin

By Amanda Diaz
Anticoagulants

- No binding to other plasma proteins

Effect:
- ↓platelet aggregation
- Prevention of propagation of thrombus
- Inhibition of fibrin formation

Toxic Effects:
- **Haemorrhage:** Especially in patients with ↑risk (recent surgery, ICH, PUD)
 - Dose-dependent effect
 - Unfractionated heparin
 - monitored with APTT
 - Reversed with protamine (basic protein prepared from fish sperm)
 - LMWH → nil monitoring available, limited reversal with protamine
- **Thrombocytopaenia**
 - Type I (30 – 40%): Non-immune mediated, within 4 days of therapy; minimal clinical significance
 - Type 2 (HITT syndrome) (5%): Immune-mediated; within 4 – 14 days of therapy; **IgG mediated** against PF4-heparin complexes
 - Platelet aggregation / thrombosis
 - ↓Platelets <50 000
 - High mortality once thrombosis begins
 - ↑Risk with unfractionated heparin 2° affinity for PF4

- **Adrenals**
 - Hypoaldosteronism
- **CVS**
 - ↓MAP following rapid IV administration
- **Miscellaneous**
 - Osteoporosis 2° complexing with mineral substances
 - Alopecia

PHARMACOKINETICS

Absorption:
- Nil oral bioavailability (large molecule)
- Unfractionated heparin → IV, S/C
- LMWH → S/C
- IM avoided 2° haematoma formation

Distribution:
- Highly bound to plasma proteins (lesser for LMWH) and ATIII
- Vd low (40-100ml/kg)

Metabolism:
- Heparinases in liver, kidney, RES
- Renal clearance for LMWH

Elimination:
- t½β 90min
- Kidney:
 - Small amount unfractionated heparin unchanged in urine
 - 1° route of elimination LMWH (not suitable for renal failure)

By Amanda Diaz
1999a(15): List the drugs used clinically as anticoagulants and antithrombotics. Write short notes on their mechanisms of action

Anticoagulants: Drugs which inhibit / prevent the activation / propagation of the coagulation cascade
Antithrombotics: Drugs which impair platelet adhesion / activation / aggregation

ANTICOAGULANTS

Unfractionated Heparin
- MW 5000 – 25000 Da
- MOA: Endogenous substance which ↑rate of formation of ATIII-thrombin complex (x 1000)
 - Complex is inactive → prevents further fibrin formation
- Also inhibits Xa at therapeutic doses
- Higher doses inhibits IXa, XIa, XIIa
- Ix: APTT measures activation of intrinsic pathway → reflection of heparin activity
- Reversing agent: Protamine

LMWH
- MW 2000 – 8000 Da
- MOA: 1° inactivates Xa, minimal effect on rate of formation of ATIII-thrombin complex (Affinity Xa:IIa → 4:1)
- Ix: Is not able to be clinically measured as has no effect on intrinsic pathway activity
- Reversing agent: Nil

Warfarin
- Coumarin derivative
- MOA: Prevents the hepatic synthesis of vitamin K-dependent factors II, VII, IX, X
 - By preventing the reduction of oxidised Vitamin K (Vitamin K is oxidised during γ carboxylation of glutamic acid residues of the factors)
 ▪ Therefore, prevents γ carboxylation → ↓factor synthesis
 - Also inhibits synthesis of protein C & S → inhibited faster than coag factors → initial procoagulant effect
- Nil effect on circulating factors (time to effect ~72hrs)
- Ix: INR / PT → PT measures extrinsic pathway activation (VII)
- Reversing agent: dependent on time needed to reversal
 - Immediate: FFP
 - Days: Vitamin K (PO / IV)
 ▪ 1mg sufficient
 ▪ 10mg will impair anticoagulation for >>days

ANTITHROMBOTICS

Aspirin
- Salicylic acid
- MOA: Irreversible blockade of platelet COX-1 → arachidonic acid conversion to ↓TXA2 → ↓platelet aggregation / ↓vasoconstriction
 - Reversible blocks other tissue COX-1 / COX-2 (reason for S/E)
Anticoagulants

Clopidogrel
- MOA: Blockade of ADP receptor on platelet surface → prevents conformational change in GP IIb/IIIa receptor (required for cross-linking with fibronectin to vessel walls and platelet aggregation)

Dipyramidole
- MOA:
 o Blocks platelet adenosine uptake
 ▪ ↓platelet adhesion to vessel walls
 o Reversible blocks phosphodiesterase → ↑cAMP → ↓Ca^{2+} → ↓phospholipase A_{2} → ↓arachidonic acid → ↓TXA_{2}
 ▪ ↓platelet aggregation
 ▪ Smooth mm relaxation
 o Potentiates endothelial prostacyclin
 ▪ Relaxes smooth mm
 ▪ ↓adhesion

GP IIb/IIIa Receptor Antagonists
- MOA: Blockade of GP IIb/IIIa R which is the final common pathway for platelet aggregation (prevents platelet cross-linking with vWF / fibronectin)
 o Abciximab: monoclonal Ab with high affinity for GP IIb/IIIa R
 o Tirofiban: Intermediate affinity for GP IIb/IIIa R

Dextran 40 / 70
- Fermented long chain polysaccharide solution
- MOA: ↓platelet adhesion, ↓vWF function, provides an endothelial ‘barrier’

Prostacyclin (PGI_{2})
- Endogenous PG
- MOA: Smooth mm relaxation, Antagonises platelet TXA_{2}
2002a(15): Describe the mechanism of the anticoagulant effect of the coumarin derivatives and what determines the onset and offset of the effect

General: Coumarin derivative anticoagulant commonly known as warfarin

Uses:
- Prophylaxis of thrombosis / embolus formation in patients with
 - Artificial heart valves
 - Arrhythmias (AF)
 - h/o PE, peripheral arterial thrombosis, DVT

Presentation:
- Tablets 0.5 / 1 / 3 / 5mg
- Racemic mixture

Mechanism of Action:
- Prevents the hepatic synthesis of factors II, VII, IX, X
- Synthesis is vitamin K dependent

Vitamin K is oxidised during the \(\gamma \) carboxylation of the glutamic acid residues of the above factors
- Vitamin K reductase (and Vitamin K epoxide reductase) returns oxidised Vitamin K to reduced form in order to allow reactions to progress
 - Warfarin competitively inhibits these \(\rightarrow \) prevents the reduction of Vitamin K
- Results in depletion of the Vitamin K dependent factors
- Also inhibits Protein C & S production \(\rightarrow \) Effect faster than inhibition of coagulation factors \(\rightarrow \)**initial procoagulant effect

Onset:
- Warfarin detectable in plasma at 1hr post administration
 - Peak 4-8 hrs post administration
- Nil action on circulating clotting factors
- Therefore, biological effect (\(\uparrow \)INR) not seen for ~3-5 days
- Vitamin K Stores
 - Rapid SoO: Loading dose regimen; low vit K stores (seen perioperatively); liver failure
 - Slow SoO: High vit K stores, high vit K diet
- Circulating clotting factors
 - Rapid SoO: perioperatively (dilution of circulating factors); liver failure (\(\downarrow \)synthesis)
- Warfarin
 - Rapid SoO /\(\uparrow \)free fraction: \(\downarrow \)alb (postop / liver failure / sepsis); displacement reactions (amiodarone); \(\downarrow \)cytP450 activity (Cimetidine)
 - Slow SoO: \(\uparrow \)cytP450 activity (phenytoin, barbiturates)
- Other anticogulants (NSAIDs, heparin) \(\rightarrow \) \(\uparrow \)risk haemorrhage

Offset:
- Rapid (min-hrs): FFP, Prothrombinex (cryoprecipitate) II, IX, X concentrate
- Day: 1mg vitamin K (10mg impairs anticoagulation for days)

By Amanda Diaz
Anticoagulants

2004a(8): Briefly describe the side-effects and complications of heparin therapy

General: Heparin is a large MW anionic mucopolysaccharide organic acid
- Endogenously: present in many tissues including liver, mast cells
- Exogenously: derived from bovine lung or porcine intestinal mucosa

Prepared as either
- Unfractionated heparin – MW 5000 – 25000 Da
- LMWH (depolymerised) – MW 4000 – 8000 Da

Mechanism of Action
- ATIII binds thrombin forming an inactive ATIII-thrombin complex → prevents fibrin formation
- Heparin ↑ ATIII–thrombin complex formation by 1000-fold
 o Heparin bound ATIII also complexes with Xa → inactive
 o Higher doses will bind other factors IXa, XIa, XIIa
- Unfractionated heparin: 1° action is ATIII-thrombin complex
- LMWH: 1° action inactivating Xa (min effect on thrombin)

Side-effects / complications
- Haemorrhage (slightly ↑ risk LMWH)
 o Prevention of platelet aggregation / haemostatic plug formation
 o ↑ risk perioperative period, h/o ICH, PUD
 o Dose-dependent effect
 o Unfractionated heparin → APTT monitoring (aim 2-2.5 control value) → narrow therapeutic window
 ▪ Reversible with protamine (basic protein prepared from fish sperm)
 o LMWH → nil monitoring available; nil reliable reversal
- Hypotension with rapid IV administration
 o 2° vasodilation effect of heparin
- Thrombocytopaenia (slightly ↑ risk with LMWH)
 o Type I: Incidence 30-40%
 ▪ Within 4 days of therapy
 ▪ Non-immune mediated
 ▪ Subclinical
 o Type 2: Incidence 5% (heparin induced thrombosis thrombocytopaenia HITT)
 IgG mediated
 ▪ Within 4-14 days of therapy
 ▪ PF4-heparin complexes formed. IgG against these → platelet aggregation / thrombus formation
 ▪ Platelets < 50 000
 ▪ High mortality
 ▪ ↑ Risk unfractionated heparin → ↑ affinity for PF4
- Adrenal insufficiency (hypoaldosteronism)
- Alopecia
- Osteoporosis 2° heparin complexing with mineral substances (↑ risk LMWH)
- Allergy / Anaphylaxis (↑ risk bovine)
- Drug displacement (competes for protein binding)
2005a(5): List the antiplatelet agents and outline their mechanisms of action, adverse effects, mode of elimination and duration of action

ASPIRIN (salicylic acid):

MOA
- **Irreversible blockade** of platelet COX-1 → prevents conversion of arachidonic acid to TXA₂
 - ↓platelet adhesion / activation / aggregation
 - ↓vasoconstriction
- Reversibly inhibits COX-1 / COX-2 throughout body
 - Endothelium (↓prostacyclin)
 - Renal arteries → ↓PG production
 - GIT → ↓PG production

Adverse Effects
Related to non-specific blockade of COX-1 and COX-2 → ↓PG synthesis
- GIT: ↑gastric acid production, ↓mucosal barrier → peptic ulceration / GIT upset
- Renal: ↓PG-dependent renal artery dilatation → renal impairment / failure in those susceptible; papillary necrosis is chronic users
- Resp: ↑O₂ consumption / CO₂ production at therapeutic doses → uncouples oxidative phosphorylation
- OD: ↑RR → resp alkalosis 2° direct stimulation of respiratory centre, metabolic acidosis 2° nature of drug

Mode of Elimination
- Hepatic:
 - 50% metabolised via saturable enzyme pathway to salicyurate
 - 20% glucuronidated (also saturable)
- Urinary Excretion
 - Obeys non-linear kinetics 2° presence of 2 saturable pathways
 - Dose dependent elimination

Duration of Action
- Platelet activity is irreversible → therefore action is present for the lifespan of the platelet (7-10 days)

CLOPIDOGREL

Mechanism of Action
- **Irreversible blockade** of the ADP receptor on the surface of platelets
- ADP released from dense granules during platelet release reactions (activation phase)
 - Role of ADP → platelet aggregation
 - Prevents GP IIb/IIIa receptor transformation into active form

Adverse Effects
- Bone marrow suppression 2° ADP receptor blockade
 - Neutropaenia
- Thrombotic thrombocytopenic purpura
- Haemorrhage → cerebral / GIT (↑risk with coadministration with aspirin)

Mode of Elimination
- Extensive hepatic metabolism → carboxylic acid derivative / glucuronide (not active)
- Elimination of metabolites in urine

Duration of Action
- Due to irreversible blockade of ADP receptor → action lasts for lifespan of platelet (7-10 days)

DIPYRIDAMOLE (Asasantin)

Mechanism of Action
- Inhibition of platelet adenosine uptake
 - ↓platelet adhesion to damaged vessels
- Potentiates effects of endothelial prostacyclin
 - ↓vasoconstriction

By Amanda Diaz
- Reversible inhibition of **phosphodiesterase** activity in platelet (Phosphodiesterase metabolises cAMP → AMP)
 - ↑cAMP → ↓Ca^{2+} → ↓phospholipase A$_2$ activity → ↓arachidonic acid → ↓TXA$_2$ formation
 - ↓platelet aggregation
 - Smooth muscle relaxation
- ↓Platelet adhesion > ↓platelet aggregation

Adverse Reactions
- Vasodilation / Hypotension

Mode of Elimination
- 1° hepatic metabolism (glucuronidation)
- Excretion via bile
- Negligible renal excretion

Duration of Action
- Short

GP IIb/IIIa RECEPTOR ANTAGONISTS (Abciximab, Tirofiban)

Mechanism of Action
Block final common pathway of platelet aggregation → Prevents cross-linking of vWF/fibronectin
- Abciximab → monoclonal antibody → high affinity for GP IIb/IIIa R
- Tirofiban → intermediate receptor affinity
Don’t block platelet adhesion / activation / release reactions

Adverse Effects
- Allergy
- Thrombocytopenia
- ↑risk bleeding with abciximab

Mode of Elimination
- Abciximab → unknown
- Tirofiban → renal (65%) / bile (25%)

Duration of Action
- Abciximab → up to 15 days
- Tirofiban → short (hours)

DEXTRAN (40 and 70) → plasma volume expanders → polysaccharides (bacterial fermentation)

Mechanism of Action
- Specific inhibition of vWF
- ↓platelet adhesion

Adverse Effects
- Fluid overload
- Allergy / anaphylaxis

Mode of Elimination
- Metabolised

Duration of Action
-

PROSTACYCLIN (PGI$_2$)

Mechanism of Action
- Inhibits platelet adhesion / aggregation 2° ↑adenyl cyclase activity
 - ↑cAMP → ↓Ca$^{2+}$ intracellular → ↓release reactions / ↓TXA$_2$ from arachidonic acid

Adverse Effects
- 2° vasodilation
 - ↓MAP, reflex ↑HR, flushing, headache

Mode of Elimination
-

Duration of Action
-

By Amanda Diaz
2007b(2): Outline the important pharmacological considerations when stopping warfaring and commencing LMWH in the perioperative period

Stopping warfarin
- Coumarin derivative
- MOA: Prevent synthesis of Vitamin K dependent factors by inhibiting oxidation of reduced vit K (important step in factor synthesis)
 - Coags 2, 7, 9, 10; protein C/S
- Long-acting drug
- t½ 40hrs; metabolised in liver (low CL)
 - Need to stop warfarin with enough time for coag factor synthesis to resume (3-5 days)
- Monitoring: INR
 - ↑warfarin duration of action:
 - ↓metabolism → liver impairment, enzyme inhibition (phenytoin, fluconazole)
 - ↓synthesis → liver impairment, vit K deficiency, cephalosporins
- Reversal:
 - vit K (IV) → 1mg at a time → difficult to rewarfarinise afterward
 - FFP → rapid reversal → risk with blood products
- Post-op
 - Restart when minimal risk surgical bleeding
 - Initially hypercoaguable → protein C/S inhibited 1st → need keep LMWH

Starting LMWH
- Mucopolysaccharide
 - MW 5000 – 8000 Da
- MOA: enhance (1000-fold) the action of ATIII in inactivating Xa → prevent activation of common pathway coagulation
- Commence 2-3 days after ceasing warfarin
 - s/c administration → high bioavailability
 - Home use feasible
- Daily dosing 1-1.5mg/kg
- Nil monitoring required
- Reversal:
 - Nil available (try protamine)
- Renal impairment → ↓dose (renally eliminated)
- Last dose 12hrs pre-op / neuraxial blockade

By Amanda Diaz
Fondaparinux
- Synthetic pentasaccharide
- Resembles part of heparin molecule
- Inhibits only thrombin through its effect on ATII-thrombin complex formation (1000 fold)
- s/c daily
- ↓incidence of HITTS cf LMWH
 - No affinity for PF4
- Renally excreted → use with caution in Pts with renal failure
Ximelagatran
- Anticoagulant touted as replacement for warfarin
- Direct thrombin inhibitor
- Orally administered as prodrug
- Caused unacceptable hepatotoxicity at trial
- Withdrawn from development