2008b(2): Describe the pharmacokinetic principles of total intravenous anaesthesia using propofol.

General: Total intravenous anaesthesia (TIVA) is the method of inducing and maintaining general anaesthesia via a continuous infusion of an IV anaesthetic agent (namely propofol) without the use of an inhaled volatile anaesthetic agent.

Aim: The goal of TIVA is to reach and maintain a central compartment or effect site concentration of propofol at a level adequate for anaesthesia.

Propofol:
- **Structure:** propofol is a sterically hindered phenol (2,6-diisopropylphenol)
- **Uses:**
 - induction and maintenance of general anaesthesia
 - IV sedation in the operating theatre and ICU
 - refractory nausea and vomiting
 - status epilepticus
- **MOA:** potentiate GABA effect on GABA_αR
- **Doses:**
 - induction 1-4mg/kg (↑dose required in children and some adults)
 - maintenance 4-12mg/kg/hr
- **Pharmacokinetics:**
 - **Absorption:**
 - IV only
 - **Distribution:**
 - Vd huge >700L
 - 98% protein bound (albumin)
 - highly lipophilic
 - t_{1/2α} ~1.5min
 - **Metabolism:**
 - hepatic (CYP450) + ?extra-hepatic clearance (Cl>Q-liver)
 - clearance ~ 30ml/kg/min
 - inactive metabolites
 - **Elimination:**
 - urine (inactive metabolites, 0.3% unchanged)
 - ↓rate of elimination in renal disease (does not effect action)

First Stage:
- when given as an infusion propofol will initially be given as a loading dose to fill the central compartment and bring about its clinical effect via its concentration at the effect site
- a large loading dose is required due to the high lipid solubility and central compartment Vd of propofol

Second Stage:
- propofol will then distribute to the peripheral compartments reducing plasma concentration and also begins to undergo metabolism further reducing the plasma concentration

By Michael Wirth
the rate of the propofol infusion is then adjusted to take into account the effects of distribution and metabolism in order to maintain a steady plasma or effect site concentration

Third Stage:
- if propofol is continued to be infused it will continue to distribute and saturate the peripheral compartments
- therefore an infusion of propofol results in clearance becoming the 1° determinant of plasma or effect site concentration as the peripheral compartments become saturated
- this is different from when propofol is given as a bolus as its offset of action is 1° due to distribution (t_{1/2α} ~1.5min)

Propofol Infusion:
- results in an ↑ context-sensitive half-time (CSHT)
- CSHT is the time taken for the plasma concentration of a drug to fall to half of the value at the time of stopping an infusion
- the ‘context’ refers to the duration of the infusion
- relates distribution and re-distribution to and from peripheral compartments and the clearance of a drug in a multi-compartmental model
- once an infusion of propofol is stopped re-distribution of the drug from the peripheral → central compartment will maintain plasma or effect site concentration and clinical effect
- in general, short infusions that have not reached steady-state will have a CSHT approaching t_{1/2α} (duration of action dependent on time taken for redistribution), whereas infusions that reach steady-state will have a CSHT that approaches t_{1/2β} (elimination half-life: time taken to achieve 50% plasma concentration by removal of drug from the body during the elimination phase)
- although propofol is highly lipophilic and has a high Vd at steady-state, t_{1/2β} is comparable to t_{1/2α} such that peripheral compartments do not become saturated even with long infusions
- CSHT of propofol infusion @ 10min = 5min, @ 3hr = 9min

Monitoring of TIVA:
- when using propofol there is no ‘point of delivery’ measure of the target concentration comparable to the end-tidal monitoring of inhalational agents
- a target controlled infusion (TCI) will display a calculated value for plasma concentration based upon the software model used (Marsh or Schnider) and the information it has been given, usually patient weight and age