2003b(2)/2002b(4): Describe the potential interactions b/n volatile agents and CO₂ absorber
- All interactions can occur with soda lime, ↑risk with baralyme

Soda Lime → composition: Ca(OH)₂ 94%; NaOH 3 – 5%; KOH 1%; indicator; silica (hardens powder); H₂O
 - Soda lime → CO₂ + H₂O → H₂CO₃
 - H₂CO₃ + 2NaOH → Na₂CO₃ + 2H₂O + Heat \textit{fast}
 - Na₂CO₃ + Ca(OH)₂ → CaCO₃ + 2NaOH \textit{slow}

Baralyme → composition: Ca(OH)₂ 87.4%; BrOH 7.4%; no silica or H₂O

Amsorb (new compound) → composition: Ca(OH)₂; CaCl₂ Nil known interaction, expensive, ↓absorbency

1. **Trichloroethylene**
 - Complete incompatibility with soda lime
 - In a heated circuit → produce \textit{phosgene} (sarin), HCl, CO → all toxic

2. **Enflurane / Desflurane / Isoflurane**
 - Contain difluoromethyl groups (CHF₂)
 - CO formation
 - ↑ formation in baralyme > soda lime
 - Worse if desiccated / ↑T°C
 - Can get up to 30% carboxyHb

3. **Halothane / Sevoflurane**
 - Degrade to \textit{haloalkenes} → shown to be toxic in rats → ?effect in humans

4. **Sevoflurane**
 - Degraded by hot absorber, worse with low FGF / ↑partial pressure
 - ↓production with high FGF, dessicated soda lime

- **Compounds A – E →** only A & B in sufficient quantities for analysis

- **Compound A**
 - Compound A shown in rat models to cause nephrotoxicity
 - LD₅₀ 400ppm
 - However, levels reaching LD₅₀ in animals are not reached in circle circuits, even when using ‘metabolic’ flows <0.25L/min fresh gas flows
 - After 5hrs at 0.25L/min FGF → 20ppm produced

- CO₂ absorbers also absorb volatiles
 - ↑time of induction of GA / ↑time to wake
 - Volatile can leach out of CO₂ absorber later eg at the beginning of another case
 - Issues with Pts susceptible to MH

By Amanda Diaz