2003b(14)/1999b(4): Outline the role of the kidney in the regulation of body water

General: Kidneys are the primary method by which body water is regulated
- Receives 25% (1250ml/min) resting CO
 o Produces high volumes of ultrafiltrate

Body Water Regulation
- Important in homeostasis
 o Optimal size/vol body fluid compartments
 o Compartment osmolarity
- Water balance: Input = Output

Filtration: Blood is filtered through renal corpuscle to form ultrafiltrate
 o GFR ~180L/day

Reabsorption:
- Reabsorption of H₂O & electrolytes is determined by pressure, osmolarity via direct effects and hormone release

Tuboglomerular Feedback (part of autoregulation)
- Intra-renal osmoreceptors (macula densa)
 o ↑renal perfusion pressure → ↑GFR → ↑tubular fluid osmolarity (via ↑Na/Cl) → detected by MD → ↑adenosine → constrict afferent arteriole
 o ↓renal perfusion pressure → ↓GFR → ↓tubular osmolarity → detected by MD → NO release → dilate afferent arteriole
- Maintains GFR constant MAP 75 – 175mmHg in combination with myogenic mechanism.

Myogenic Mechanism
- ↑stretch afferent arteriole: via myogenic mechanism → ↑ stretch → reflex contraction of afferent smooth mm
 o Autoregulates filtration pressures over wide MAP

Pressure:
- ↑MAP
 o ↑Stretcher atria → release of ANP → ↓afferent tone/↑efferent tone → ↑GFR
 ▪ Diuresis
 ▪ Inhibition RAA system/ADH
 o Detected by central baroreceptors → ↓ADH from post pituitary → ↓ADH-urea transporters in CD / ↓aquaporin insertion CD
 ▪ ↓renal medullary osmolarity (↓urea reabsorption)
 ▪ diuresis
- ↓MAP
 o ↓stretch central/peripheral (RA, great vv) baroreceptors → 10% ECF vol loss → ↑ADH post pituitary (↑rapidly beyond 10% loss)
 ▪ MOA: binds V₂ receptors in CD → ↑cAMP → opens aquaporins
 ▪ ↑ADH-urea transporters → ↑urea reabsorption into medullary interstitium

By Amanda Diaz
Renal

- ↑renal medullary osmolarity → ↑concentrating ability of kidney → ↑H₂O reabsorption
 - ↓afferent arteriolar pressure → detected by intrarenal baroreceptors → Stimulate renin release granular cells JGA → cleaves angiotensinogen → ATI → ACE (lungs) ATII → Aldosterone release from adrenal cortex
 - ↓GFR
 - ↑Na⁺/H₂O reabsorption from CD
 - ↑SVR
 - ↓stretch high P baroreceptors (carotid sinus/aortic arch)
 - Removal inhibition SNS
 - ↑CO, ↑SVR
 - ↑Renin release (β₁ stimulation)
 - Constrict afferent/efferent arterioles (α₁ stimulation) → ↓GFR

Osmolarity
- Central osmoreceptors
 - ↓osmolarity (<280mosm) of vascular compartment (excess H₂O) → ↓ADH from post pituitary → ↓H₂O reabsorption → large vol dilute urine
 - ↑osm (>300mosm) → ↑ADH → ↑H₂O reabsorption → small vol conc urine

Obligatory Urine Loss
- Solute load of 600mosm/day must be excreted
 - Urea, sulphates, phosphates, metabolic by-products)
- Min urine loss of 430ml to accommodate this
 - As max concentrating capacity of urine = 1400mosm/kg H₂O)