By Amanda Diaz

2003b(10)/2000b(1): Describe the role of baroreceptors in the control of systemic arterial pressure

General: Arterial pressure is maintained within narrow limits during normal functioning.

\[\text{MAP} = \text{CO} \times \text{SVR} \]

Achieved by:
- Detection system (baroreceptors)
- Central control (medulla, hypothalamus, higher centres)
 - Baseline: SNS tone present, PNS quiescent
- Effectors (SNS/PNS efferents)

Baroreceptors
- Detect changes in blood pressure
- 2 types of baroreceptor:
 - High pressure
 - Low pressure (volume)

High pressure Baroreceptors
- Detect changes in blood pressure by degree of stretch
 - ↑rate of firing with ↑MAP (graph) → project inhibitory neurones to SNS
- Present in carotid sinus and aortic arch
- Rapid response system operating via negative feedback to maintain constant MAP via changes in SVR and CO

Mechanism of Action:
- ↑MAP → stretches baroreceptors
 - Inhibitory afferents to RVLM → ↓SNS activity → ↓rate of firing of efferents to heart and peripheral vessels via interomediolateral columns
 - Heart: ↓HR, ↓contractility, ↓SV
 - Vessels: ↓SVR → vasodilatation ↓tendency for venous return → venodilatation
 - Stimulatory afferents through CNIX and CNX (nucleus tractus solitaries) to medulla (vagal nucleus/nucleus ambiguous) → ↑PNS activity → ↑efferent activity to heart via vagus nn
 - Heart: ↓HR, ↓contractility, ↓SV
 - Firing rate set-point of high pressure baroreceptors can be reset to a higher level in response to chronically elevated MAP (HT)

 Clinically, response of high pressure receptors can be tested via Valsalva manoeuvre

Low Pressure (volume) Baroreceptors
- Detect changes in volume which cause stretching
- Present in right atrium, great veins
- Respond to ↑stretch (mechanoceptors)
- In general, provide a slow-response feedback system to exert effects on blood vol over extended periods of time
- ↑vol (~10%) → afferents via CN X to medulla → Overall inhibitory effect on heart (stimulation PNS, inhibition SNS)
 - Heart: ↓HR, ↓contractility, ↓SV, ↓CO
 - Vessels: venodilatation, vasodilatation
 - Also efferents from hypothalamus → ↓ADH, ↓thirst
 - Production of ANP from atrium
Overall effect is to ↓effective blood vol by ↑reservoir capacity, ↑salt and H₂O excretion via kidneys

Valsalva Maneouvre
- Clinically measure the responsiveness of high pressure baroreceptors (carotid sinus, aortic arch)
- Inspiration held against a closed glottis/nose & mouth for 10s
- Then released

Phase 1: Inspiration held → ↑intrathoracic pressure → slight ↑CO from emptying of pulmonary venous reservoir → ↑MAP

Phase 2: Continued ↑intrathoracic pressure → ↓VR (↓CO) → ↓firing of high pressure baroreceptors → ↑SNS/↓PNS → ↑HR, ↑TPR (vasoconstriction), ↓venous capacitance (venoconstriction)
 - Unable to compensate completely → MAP decreases gradually

Phase 3: Release of Valsalva → sudden ↓intrathoracic pressure → sudden ↑capacitance of pulmonary vasculature → ↑pulmonary blood vol → ↓CO → ↓MAP

Phase 4: Return of CO to normal in presence of ↑TPR → overshoot of MAP → detected by high pressure baroreceptors → ↓SNS stimulation (↓TPR, venodilatation), ↑PNS (vagal stimulation)
 - ↓HR

Valsalva Ratio: ratio of highest phase 2 HR: lowest phase 4 HR
- Normal = 1.5
- <1.5 in autonomic dysfunction