2002b(2): Briefly describe the factors affecting the uptake of an orally administered drug

General: Uptake of an orally administered drug will be dependent on:
 1. Drug characteristics
 2. Pt characteristics

Drug Characteristics:
Uptake from GIT is dependent on rate of diffusion, which follows Fick’s law of diffusion

\[F = A \times \text{sol} \times P_{1-2} \times \frac{1}{\sqrt{MW}} \]

where F=flux, A=surface area, sol=drug solubility, \(T \)=barrier thickness, \(P_{1-2} \)=conc gradient

Passive diffusion is most common method of drug absorption.
Dependent on:
- MW: Rate of diffusion inversely proportional to MW Graham’s law
 - MW<1,000 Da ↑diffusion
- pKa (sol): the degree of ionisation determines solubility across the membrane.
 - Only unionised pass readily.
 - Acidic drugs (eg aspirin) are unionised in the acid stomach, are absorbed rapidly
 - Weak bases (eg propranolol) are ionised in the stomach (↓uptake), relatively unionised in the duodenum (↑uptake).
- Formulation:
 - delay absorption → ↑size of molecule, binding agents (eg enteric coated), granulated
 - rapid absorption → liquids
- Physicochemical interaction (↓\(P_{1-2} \)):
 - gut contents/food/other drugs → bind/inactivate drug
 - eg tetracycline bound with Ca\(^{2+} \) from milk
 - eg bile salts, bacterial degradation
- Pharmacokinetics: metabolism at the gut wall (eg GTN) (↓\(P_{1-2} \))

Patient characteristics
- Compliance with medication
- Mucosal blood flow (↓\(P_{1-2} \))
- Vomiting (↓A)
 - Insufficient/inadequate exposure to GIT to allow absorption
- Malabsorption syndrome/↑transit time (↓A)
 - Acquired (eg tropical sprue) or congenital (Coeliac disease)
 - ↓effective area of absorption
- Gastric stasis (↓A)
 - Illness, trauma, drugs
 - Most drugs → ↓absorption (except aspirin, which is unionised in the stomach, and will continue to be absorbed from there in event of gastric stasis)