1997a(9): Briefly describe the pharmacological role of the nicotinic acetylcholine receptor

General: nicotinic AChR (nAChR) is a **ligand gated** receptor with a **central cation ionophore**

Structure: Pentameric

- 2α , β , γ , δ (ϵ in fetal NMJ)

Location:

- Postysynaptic on the motor endplate (NMJ)
 - \circ Motor endplate depolarisation \rightarrow contraction of skeletal muscle
- Presynaptic (nerve terminal)
 - o Positive feedback mechanism to ↑mobilisation / release of ACh
- Autonomic ganglia (sympathetic / parasympathetic)
 - Depolarisation postganglionic neurons \rightarrow ↑firing
- Adrenal medulla
 - Catecholamine release
- CNS
 - o Various undefined responses

Ligand: ACh must bind to both a subunits

- Synthesised in nerve axoplasm
- Stored in vesicles of presynaptic nerve terminal

ACh Release:

Motor nerve action potential → exocytosis of vesicles and release of ACh into cleft → ~200 vesicles released (Ca dependent mechanism)

nAChR Activation:

- ACh diffuses across cleft \rightarrow binds nAChR
 - o 2 molecules ACh required to activate receptor
- Activation: Conformational change \rightarrow opening of **central ionophore**
 - Influx cations (1° Na, also K, Ca)
- Causes local reversal of membrane potential (EPP)
 - Summate many EPP \rightarrow reach threshold (-10mV) \rightarrow opening of voltage gated fast Na channel \rightarrow membrane depolarisation \rightarrow AP
- Antagonists of NMJ (NMBD)
 - Compete with ACh for binding sites
 - Depolarising NMBD (sux) will activate nAChR but maintain it in open state → unable to generate more AP
 - Non-depolarising NMBD (vec, roc, atra, cisatra) → competitive blockade of nAChR, nil intrinsic agonist activity
 - Blockade

nAChR Inactivation:

- Rapid hydrolysis by acetylcholinesterase in synaptic cleft
 - Each molecule stimulates only 1 receptor for 1ms
- Inhibitors of AChE
 - $\circ~$ Prevent hydrolysis of ACh in NMJ $\rightarrow \uparrow availability$ of ACh for activation of multiple nAChR
 - Useful in reversal of NMBD \rightarrow ↑substrate available for competition \rightarrow reverses competitive blockade

1997b(16): Describe the location and function of dopamine receptors. Give examples of agonists and antagonists

General: Dopamine is an endogenous sympathomimetic

- Dopamine receptors are present throughout the CNS and PNS
- Receptors are classified 1-5

 D_1R (D_5)

- Postsynaptic
- Location: vessel smooth muscle
 - Renal, mesenteric, coronary, cerebral
- Receptor type: GPCR (G_s)
 - \uparrow adenylyl cyclase → \uparrow cAMP

- Stimulation: produces vasodilation

- D_2R (D_3 , D_5)
 - Presynaptic
 - Location:
 - o CNS
 - PNS: Noradrenergic nerve terminals of vascular smooth muscle
 - Vasodilation via ↓NA release
 - Receptor type: GPCR (G_i)
 - $\circ \quad {\downarrow} adenylyl \ cylase \rightarrow {\downarrow} cAMP$
 - Stimulation: UNA release from nerve terminal
 - o Role in reward pathway
 - o **N&V**

CNS Function

- Limbic system: mood, emotional stability
 - \uparrow activity DR \rightarrow perceptual disturbance (psychosis)
- CTZ: N&V
- Basal ganglia (corpus striatum / substantia nigra): movement modulation
 Balances ACh stimulation
- Pituitary
 - Tonic inhibition of PRL release

Agonists

- L-Dopa (prodrug): carboxylated dopamine → good PO availability → dexcarboxylated → ↑lipid solubility → cross BBB → central effect
- Apomorphine
- Bromocriptine

Antagonists

- Phenothiazines
 - Prochloperazine, chlorpromazine, promethazine
- Butyrophenones
 - o Droperidol
 - o Haloperidol
- Clozapine
- Benzamide
 - o Metaclopramide

2002a(16): Briefly outline the pharmacology of flumazenil

General: Major inhibitory neurotransmitter in the CNS is GABA

- Binds to GABA_AR (ionotropic) and GABA_BR (metabotropic)

GABA_AR: pentameric receptor with central ion pore. Comprised 2α , 2β , γ subunits

- GABA binding site on β subunits \rightarrow binding causes opening of central Cl⁻ channel and subsequent cell membrane hyperpolarisation
- Contains specific binding sites for **barbiturates**, **alcohol**, **benzodiazepines**

Benzodiazepines

 Bind to BZ receptor (α subunit) → ↑affinity for GABA → ↑frequency of Cl⁻ channel opening

Flumazenil: 1,4-imidazobenzodiazepine

Physicochemical

- Chemical: Imidazobenzodiazepine
- Presentation: Clear / colourless solution 100µg/ml (5mL)
- Route of administration: IV only

Pharmacodynamics

- Specific benzodiazepine receptor competitive antagonist
 - o High receptor affinity
 - Minimal agonist activity
- MOA: dose-dependent prevention / reversal of effect of benzodiazepines
- Uses: 'wake up' test in scoliosis surgery; treatment BZ OD
- Dose: Initial 0.2mg IV \rightarrow reversal expected in 2min
 - 0.1mg IV at 60s intervals titrated to effect (max 1mg)
 - Continuous low-dose infusion 0.1 0.4mg/hr
- Duration of action: 30 60 min
 - May require repeat dosing (duration effect < benzo's)
- S/E: Minimal likely 2° weak intrinsic agonist activity

Pharmacokinetics

Absorption: Good PO absorption \rightarrow extensive 1st pass metabolism Distribution: 50% protein bound (1° albumin)

- Vd 1L/kg

Metabolism: Carboxylic acid & glucoronide (inactive) Elimination: Urine; <0.1% unchanged

- CL = 10 14 m l/kg/min
- $t_{\frac{1}{2}\beta} = 53 \text{min}$

2003b(3)/2001a(10): Outline GABA's role as a neurotransmitter and indicate how its actions may be modified by pharmacological agents

General: y-aminobutyric acid is a neurotransmitter

- derived from glutamate
- 1° inhibitory neurotransmitter in brain
- Binds GABA receptors
 - o GABA_AR
 - \circ GABA_BR

GABA_AR

- α , β , γ δ subunits available \rightarrow homomeric / heteromeric possible
- 1° postsynaptic
- Ionotropic receptor \rightarrow pentameric receptor with central Cl⁻ channel \rightarrow opening \rightarrow cell hyperpolarisation
- β subunit: GABA binding site
 - Antagonist at GABA binding site: bicucculine
- α subunits
 - Benzodiazepine receptors (BZ1 / BZ2): potentiate effects of GABA_AR by \uparrow affinity for GABA → \uparrow Cl⁻ conductance
 - Requires GABA
- Other drug effects:
 - \circ Barbiturates \rightarrow potentiate Cl⁻ conductance
 - Low dose: Requires GABA
 - High dose: Activation in absence of GABA
 - Propofol \rightarrow direct stimulation of GABA_AR
 - Progesterone \rightarrow potentiates CI conductance
 - Alcohol / VA / $GHB \rightarrow$ potentiate Cl⁻ conductance
 - Mechanisms unknown
 - Flumazenil → competitive antagonist (dose-dependent reversal) → min intrinsic activity → ↓BZ-related Cl⁻ conductance potentiation

GABA_BR

- Presynaptic
- Metabotropic receptor \to GPCR \to leads to $\uparrow K^+$ conductance \to cell hyperpolarisation
- Drug Effects:
 - \circ Baclofen \rightarrow agonist, potentiates GABA effect
 - Phaclofen \rightarrow (non-therapeutic) antagonist

2004b(3)/1998a(9): List the effects of histamine. Write a brief outline on the pharmacology of the H_1 receptor blocking drugs

General: Histamine is an **endogenous amine** stored in **granulated vesicles** of mast cells and basophils

- Found in most tissues of body
 - Highest concentrations lung, skin, GIT
- Non-mast cell mediated histamine \rightarrow located in brain where is acts as a **neurotransmitter**

Histamine Receptors \rightarrow named according to response to specific blocking drugs

H1

- GPCR \rightarrow phospholipase C \rightarrow IP3, DAG $\rightarrow \uparrow$ Ca²⁺
- Respiratory tract: Bronchial smooth muscle (*tone*); *mucous* secretion
- Vessels:
 - o Vasodilatation 2° ↑NO production flare, erythema
 - ↓intravascular vol (shock)
 - \circ \uparrow vascular permeability \rightarrow swelling, angioedema wheal
 - \uparrow prostacyclin production \rightarrow vasodilatation, \downarrow platelet aggregation, \uparrow **airways resistance**
- Heart: ↓conduction AV node; coronary artery vasoconstriction
- CNS: post-synaptic excitatory
- Skin: Stimulation of cutaneous nerve endings pruritis

H2

- GPCR $\rightarrow \uparrow$ adenylyl cyclase $\rightarrow \uparrow$ cAMP
- GIT: †gastric acid production (parietal cells)
- Heart: coronary artery vasodilation; positive inotrope / chronotrope
- CNS: post-synaptic inhibitory

H3

- Used only in research
- CNS: pre-synaptic inhibitory (?negative feedback role)
- **H1R** antagonists \rightarrow Reversible competitive antagonists

 1^{st} Generation \rightarrow Cross BBB (central acting)

• Promethazine (Phenergen)

Pharmacodynamics

- MOA: H1R blockade, also anticholinergic effects (small anti-5HT, antiD)
- Use: antihistamine, antiemetic, sedative
- CNS:
 - o potent sedative
 - o central antiemetic (block vestibular stimulation of CTZ)
 - o anxiolytic
 - o slightly antanalgesic
- CVS:
 - o Nil effect at therapeutic dose
 - o Transient ↓MAP with rapid IVI
- Resp:
 - o Bronchodilation

- o ↓secretions
- o Antiptussive
- GIT: ↓LOS tone
- Toxicity:
 - Anticholinergic → extra pyramidal reactions (dystonia) in high doses; excitatory phenomena
 - Dry mouth, blurred vision, urinary retention
 - o Sedation
 - o Overdose: Seizures, coma, death

Pharmacokinetics

Absorption: extensive 1st pass metabolism

Distribution: Vd 2.5L/kg

- Highly protein bound (93%)

Metabolism: Hepatic (sulphoxidation, N-dealkylation) Elimination: Urine; 2% unchanged

- CL 1.4L/min
- t_{½β} 8hrs

2^{nd} Generation \rightarrow not central acting (do not cross BBB)

- Fexofenadine (Telfast)
- Pharmacodynamics

MOA: Reversible competitive inhibition

CVS: As above

CNS: Nil cross BBB; nil anti-emetic; nil sedative effect

Resp: as above

Pharmacokinetics

As above

2007a(7): Describe the pharmacology of midazolam including its mechanism of action

Short acting BZ.

Physicochemical:

- Clear colourless solⁿ 1,2,5mg/ml
- pH soln 3.5
 - $\circ \quad pH < 4: Open \ ring \ structure \rightarrow H_2O \ soluble$
 - pH > 4: Closed ring → \uparrow lipid solubility
- pKa: 6.5, basic drug
 - o pH 7.4 89% unionised

Pharmacodynamics

- Use: sedative, hypnotic, anxiolytic, anticonvulsant
- MOA: Binds to BZ receptor of $GABA_AR \alpha$ subunit
 - Potentiates effect of GABA $\rightarrow \uparrow$ freq opening of intrinsic CI⁻ channel
- CNS: dose-dependent \CMRO₂ / \CBF; antinociceptive in SC/epidural
- CVS: May ↓BP on rapid injection
- Resp: °effect MV. ↓TV / ↑RR. Chemoreceptors intact.
- Interaction:
 - $\circ~$ metabolised by same CYTP450 system as alfentanil \rightarrow coadministration prolongs effect
 - MAC sparing
 - o Blunts response to instrumentation of airways with fentanyl

Pharmacokinetics

Absorption: Oral bioavailability 40%; IM/intranasal; IV Distribution: Vd 1-1.5L/kg; 95% PB (albumin)

Metabolism: Short duration of action 2° rapid distribution

- Liver metabolism (almost complete) \rightarrow hydroxylation (to active compound) \rightarrow then glucoronidⁿ

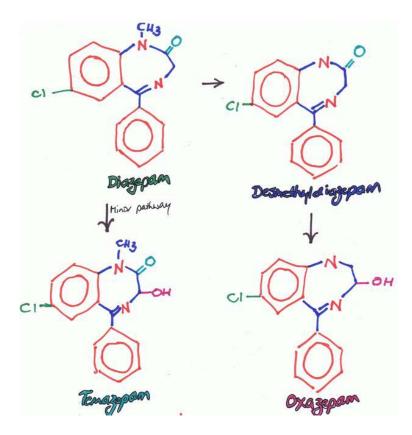
Elimination: Urine

- t_{½β}: 1-4hrs
- CL: ~7ml/kg/min (> diazepam)

MAKEUP: Compare and contrast the pharmacology of diazepam and midazolam

General: Both are benzodiazepines

- Act by potentiating the effect of GABA on the GABA_AR in the CNS
 - o Binds to specific BZ binding site (α subunit)
 - \uparrow affinity of receptor for GABA \rightarrow \uparrow opening frequency of channel
- Activation of receptor \rightarrow opening of central ionophore $\rightarrow \uparrow$ influx Cl⁻
 - Cell hyperpolarisation
 - ↓depolarisation


BZ receptor

2 subtypes found

- BZ1 → located in spinal cord and cerebellum
 o Effect: Anxiolysis
- BZ2 \rightarrow located in spinal cord, hippocampus, cerebral cortex
 - Effect: Sedative; anti-convulsant

	Diazepam	Midazolam
Physicochemical	·	
Structure	CI CHAN	CHISCH RISE Chisand Rise PHI 25
Chemical	Benzodiazepine	Imidazobenzodiazepine
Presentation	Tablets 2, 5, 10mg Suppository 10mg; 2, 4mg/ml sol ⁿ Sol ⁿ dissolved in benzyl alcohol (clear, painful); oil:H ₂ O (less pain) 5mg/ml	Clear colourless solution 1, 2, 5mg/ml
рКа		6.15 Solution buffered to 3.5 2° pH- dependent ring-opening phenomena: Open pH < 4 = H ₂ O sol Closed pH > 4 = lipid sol
Route of Admin	PO: 2-60mg/day IVI: 10-20mg	IM / IV: 0.02-0.2mg/kg Infusion: 0.02-0.2mg/kg/hr Effect in ~10min; last 20-60min Intranasal / PO: 2-3 x IV Intrathecal: 0.3-2mg Epidural: 0.1-0.2mg
Pharmacodynamics		
MOA	BZ \rightarrow potentiates GABA effect GABA _A R κ -opioid agonist <i>in vitro</i> ?role in spinal analgesia	$BZ \rightarrow potentiates GABA effect on GABAAR \kappa-opioid agonist in vitro ?role in spinal analgesia$
Use	Anxiolytic; hypnotic; sedative Antiepileptic Relieve muscle spasm	Induction Sedation Anxiolytic

	Alcohol withdrawal	Anticonvulsant
CVS	Transient ↓MAP / ↓CO with rapid	↓MAP (5%); ↓SVR
	IVI	Reflex ↑HR
	Coronary vasodilation	Obtund pressor response to
	↓cardiac mm O ₂ requirements	intubation
Resp	Large dose → resp depression	↓TV / ↑RR (compensated)
i toop	Depressed hypoxic response (>	MV unchanged
	than depressed hypercarbic)	Apnoea \rightarrow variable b/n Pts
		↓vent response ↑pCO ₂
CNS	Sedation; hypnosis	Rapid cross BBB but slow effect-
	↓aggression	site equilibrium (0.9-5.6 min)
	Paradoxical excitation esp in	Hypnosis; sedation
	elderly	↓aggression
	Anterograde amnesia	Anterograde amnesia
	Anticonvulsant	Neuraxial use \rightarrow antinociceptive
	Analgesic	\downarrow CMRO ₂ / CBF
0/1	Depresses spinal reflexes	
Other	Nil	↓adrenergic response to stress
		Nil effect cortisol / RAA
		Cross placenta / breast milk
		↓PONV
Toxicity / SE	Drowsiness; ataxia; headache	Withdrawal syndrome in children
	Rash	with prolonged use
	GI upset	
	Urinary retention	
	Tolerance / dependence occur	
	Withdrawal syndrome may occur	
	IVI irritant (benzyl alcohol prep)	
Interactions	↓MAC	↓MAC
	↓by drugs competing for cytP450	Prolonged action if used
	system (cimetidine)	"/alfentanil \rightarrow same cytP450.
Pharmacokinetics		
Absorption	Rapid PO \rightarrow bioavailability 85-	PO: bioavailability 44% 2°
	100%	extensive 1 st pass
	Slow erratic IMI absorption	
Distribution	1-1.5L/kg	1-1.5L/kg
Distribution	95% protein bound (alb/AAG)	95% protein bound
		Highly lipophilic with closed ring \rightarrow
		short duration action 2° dist ⁿ
Metabolism	Honotia , activa matabalitas	
Metabolism	Hepatic \rightarrow active metabolites	Hepatic \rightarrow Hydroxylation
	N-demethylation (oxidising) \rightarrow	Glucoronidation
	desmethyldiazepam v active ($t_{\frac{1}{2}}$	Compounds not clinically active
	$>$ 100hrs) \rightarrow must be gluc ⁿ for	CL x10 cf diazepam
	excretion**	
	Oxazepam \rightarrow gluc ⁿ (inactive),	
	temazepam→gluc ⁿ (inactive)	
Elimination	Urinary; <1% unchanged	Urine; <1% unchanged
	CL: 0.2-0.5ml/kg/min *↓with	CL: 6-10ml/kg/min
	concurrent use halothane*	
	t _{½β} : 20-40hrs	$t_{1/2\beta}$: 1-4hr \rightarrow may be x2 in elderly

MAKEUP: Write short notes on the pharmacology of 5-HT

General: 5-hydroxytryptamine (serotonin)

- widely distributed
- Endogenous vasoactive substance
 - Vasoconstriction: cerebral, coronary, pulmonary vasculature
- Neurotransmitter
 - \circ Emesis
 - o **Pain**
 - Location: 90% in GIT, 10% within platelets / CNS
 - Unknown function in platelets \rightarrow ?mop-up from released serotonin

5-HT Receptors

Classified 1 – 4

- 5-HT₁: $G_i \rightarrow \downarrow$ adenylyl cyclase $\rightarrow \downarrow$ cAMP
 - \circ 1a, 1b: CNS \rightarrow behavioural effects (sleep, thermoregulation)
 - 1d: CNS \rightarrow vasoconstriction
 - agonist: sumitriptan
- 5-HT₂: $G_p \rightarrow \uparrow phospholipase C \rightarrow \uparrow IP_3$, DAG $\rightarrow \uparrow Ca^{2+}$
 - o 2a: CNS/PNS; smooth muscle; platelets
 - agonist: LSD;
 - antagonist: ketaserin
 - 2b: Gastric fundus → \uparrow contraction
 - 2c: $CNS \rightarrow \uparrow CSF$ production
- 5-HT₃: Direct activation Na⁺ and K⁺ channels (non-GPCR)
 - PNS/CNS \rightarrow visceral pain, N&V (CTZ), anxiety
 - antagonists: ondansetron, tropisetron
 - 5-HT₄: $G_s \rightarrow \uparrow adenylyl \ cyclase \rightarrow \uparrow cAMP$
 - o Brain
- 5-HT₅₋₇: $G_s \rightarrow \uparrow adenylyl \ cyclase \rightarrow \uparrow cAMP$
 - o **Brain**

Serotonin Antagonists

- SSRIs (fluoxetine) \rightarrow act on most receptor subtypes
 - Can trigger serotonin syndrome: confusion, agitation, HT, ↑HR, arrhythmias, ↑temp, DIC
 - Treatment: benzodiazepine (lorazepam)
- 5-HT₃ (ondansetron) \rightarrow PO bioavailability 60%
 - \circ Metabolism: hepatic \rightarrow inactive glucoronides / sulfates
 - ↑duration of action inb hepatic failure
 - S/E: headache, light-headedness, constipation / abdominal pain